TensorFlow实现批量归一化操作的示例

批量归一化

在对神经网络的优化方法中,有一种使用十分广泛的方法——批量归一化,使得神经网络的识别准确度得到了极大的提升。

在网络的前向计算过程中,当输出的数据不再同一分布时,可能会使得loss的值非常大,使得网络无法进行计算。产生梯度爆炸的原因是因为网络的内部协变量转移,即正向传播的不同层参数会将反向训练计算时参照的数据样本分布改变。批量归一化的目的,就是要最大限度地保证每次的正向传播输出在同一分布上,这样反向计算时参照的数据样本分布就会与正向计算时的数据分布一样了,保证分布的统一。

了解了原理,批量正则化的做法就会变得简单,即将每一层运算出来的数据都归一化成均值为0方差为1的标准高斯分布。这样就会在保留样本分布特征的同时,又消除层与层间的分布差异。在实际的应用中,批量归一化的收敛非常快,并且有很强的泛化能力,在一些情况下,完全可以代替前面的正则化,dropout。

批量归一化的定义

在TensorFlow中有自带的BN函数定义:

tf.nn.batch_normalization(x,
             maen,
             variance,
             offset,
             scale,
             variance_epsilon)

各个参数的含义如下:

x:代表输入

mean:代表样本的均值

variance:代表方差

offset:代表偏移量,即相加一个转化值,通常是用激活函数来做。

scale:代表缩放,即乘以一个转化值,同理,一般是1

variance_epsilon:为了避免分母是0的情况,给分母加一个极小值。

要使用这个函数,还需要另外的一个函数的配合:tf.nn.moments(),由此函数来计算均值和方差,然后就可以使用BN了,给函数的定义如下:

tf.nn.moments(x, axes, name, keep_dims=False),axes指定那个轴求均值和方差。

为了更好的效果,我们使用平滑指数衰减的方法来优化每次的均值和方差,这里可以使用

tf.train.ExponentialMovingAverage()函数,它的作用是让上一次的值对本次的值有一个衰减后的影响,从而使的每次的值连起来后会相对平滑一下。

批量归一化的简单用法

下面介绍具体的用法,在使用的时候需要引入头文件。

from tensorflow.contrib.layers.python.layers import batch_norm

函数的定义如下:

batch_norm(inputs,
      decay,
      center,
      scale,
      epsilon,
      activation_fn,
      param_initializers=None,
      param_regularizers=None,
      updates_collections=ops.GraphKeys.UPDATE_OPS,
      is_training=True,
      reuse=None,
      variables_collections=None,
      outputs_collections=None,
      trainable=True,
      batch_weights=None,
      fused=False,
      data_format=DATA_FORMAT_NHWC,
      zero_debias_moving_mean=False,
      scope=None,
      renorm=False,
      renorm_clipping=None,
      renorm_decay=0.99)

各参数的具体含义如下:

inputs:输入

decay:移动平均值的衰减速度,使用的是平滑指数衰减的方法更新均值方差,一般会设置0.9,值太小会导致更新太快,值太大会导致几乎没有衰减,容易出现过拟合。

scale:是否进行变换,通过乘以一个gamma值进行缩放,我们常习惯在BN后面接一个线性变化,如relu。

epsilon:为了避免分母为0,给分母加上一个极小值,一般默认。

is_training:当为True时,代表训练过程,这时会不断更新样本集的均值和方差,当测试时,要设置为False,这样就会使用训练样本的均值和方差。

updates_collections:在训练时,提供一种内置的均值方差更新机制,即通过图中的tf.GraphKeys.UPDATE_OPS变量来更新。但它是在每次当前批次训练完成后才更新均值和方差,这样导致当前数据总是使用前一次的均值和方差,没有得到最新的值,所以一般设置为None,让均值和方差及时更新,但在性能上稍慢。

reuse:支持变量共享。

具体的代码如下:

x = tf.placeholder(dtype=tf.float32, shape=[None, 32, 32, 3])
y = tf.placeholder(dtype=tf.float32, shape=[None, 10])
train = tf.Variable(tf.constant(False))

x_images = tf.reshape(x, [-1, 32, 32, 3])

def batch_norm_layer(value, train=False, name='batch_norm'):
  if train is not False:
    return batch_norm(value, decay=0.9, updates_collections=None, is_training=True)
  else:
    return batch_norm(value, decay=0.9, updates_collections=None, is_training=False)

w_conv1 = init_cnn.weight_variable([3, 3, 3, 64]) # [-1, 32, 32, 3]
b_conv1 = init_cnn.bias_variable([64])
h_conv1 = tf.nn.relu(batch_norm_layer((init_cnn.conv2d(x_images, w_conv1) + b_conv1), train))
h_pool1 = init_cnn.max_pool_2x2(h_conv1)

w_conv2 = init_cnn.weight_variable([3, 3, 64, 64]) # [-1, 16, 16, 64]
b_conv2 = init_cnn.bias_variable([64])
h_conv2 = tf.nn.relu(batch_norm_layer((init_cnn.conv2d(h_pool1, w_conv2) + b_conv2), train))
h_pool2 = init_cnn.max_pool_2x2(h_conv2)

w_conv3 = init_cnn.weight_variable([3, 3, 64, 32]) # [-1, 18, 8, 32]
b_conv3 = init_cnn.bias_variable([32])
h_conv3 = tf.nn.relu(batch_norm_layer((init_cnn.conv2d(h_pool2, w_conv3) + b_conv3), train))
h_pool3 = init_cnn.max_pool_2x2(h_conv3)

w_conv4 = init_cnn.weight_variable([3, 3, 32, 16]) # [-1, 18, 8, 32]
b_conv4 = init_cnn.bias_variable([16])
h_conv4 = tf.nn.relu(batch_norm_layer((init_cnn.conv2d(h_pool3, w_conv4) + b_conv4), train))
h_pool4 = init_cnn.max_pool_2x2(h_conv4)

w_conv5 = init_cnn.weight_variable([3, 3, 16, 10]) # [-1, 4, 4, 16]
b_conv5 = init_cnn.bias_variable([10])
h_conv5 = tf.nn.relu(batch_norm_layer((init_cnn.conv2d(h_pool4, w_conv5) + b_conv5), train))
h_pool5 = init_cnn.avg_pool_4x4(h_conv5)         # [-1, 4, 4, 10]

y_pool = tf.reshape(h_pool5, shape=[-1, 10])

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_pool))

optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)

加上了BN层之后,识别的准确率显著的得到了提升,并且计算速度也是飞起。

到此这篇关于TensorFlow实现批量归一化操作的示例的文章就介绍到这了,更多相关TensorFlow 批量归一化操作内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python数据归一化及三种方法详解

    数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性.原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价.以下是三种常用的归一化方法: min-max标准化(Min-Max Normalization) 也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 , 1]之间.转换函数如下: 其中max为样本数据的最大值,

  • python实现几种归一化方法(Normalization Method)

    数据归一化问题是数据挖掘中特征向量表达时的重要问题,当不同的特征成列在一起的时候,由于特征本身表达方式的原因而导致在绝对数值上的小数据被大数据"吃掉"的情况,这个时候我们需要做的就是对抽取出来的features vector进行归一化处理,以保证每个特征被分类器平等对待.下面我描述几种常见的Normalization Method,并提供相应的python实现(其实很简单): 1.(0,1)标准化: 这是最简单也是最容易想到的方法,通过遍历feature vector里的每一个数据,将

  • python numpy 按行归一化的实例

    如下所示: import numpy as np Z=np.random.random((5,5)) Zmax,Zmin=Z.max(axis=0),Z.min(axis=0) Z=(Z-Zmin)/(Zmax-Zmin) print(Z) 以上这篇python numpy 按行归一化的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 如何基于python实现归一化处理

    这篇文章主要介绍了如何基于python实现归一化处理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.定义 归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式.主要是为了数据处理方便提出来的,把数据映射到0-1范围之内处理,更加便捷快速. 二.目的 不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比

  • Python数据预处理之数据规范化(归一化)示例

    本文实例讲述了Python数据预处理之数据规范化.分享给大家供大家参考,具体如下: 数据规范化 为了消除指标之间的量纲和取值范围差异的影响,需要进行标准化(归一化)处理,将数据按照比例进行缩放,使之落入一个特定的区域,便于进行综合分析. 数据规范化方法主要有: - 最小-最大规范化 - 零-均值规范化 数据示例 代码实现 #-*- coding: utf-8 -*- #数据规范化 import pandas as pd import numpy as np datafile = 'normali

  • 对python3 一组数值的归一化处理方法详解

    1.什么是归一化: 归一化就是把一组数(大于1)化为以1为最大值,0为最小值,其余数据按百分比计算的方法.如:1,2,3.,那归一化后就是:0,0.5,1 2.归一化步骤: 如:2,4,6 (1)找出一组数里的最小值和最大值,然后就算最大值和最小值的差值 min = 2: max = 6: r = max - min = 4 (2)数组中每个数都减去最小值 2,4,6 变成 0,2,4 (3)再除去差值r 0,2,4 变成 0,0.5,1 就得出归一化后的数组了 3.用python 把一个矩阵中

  • 基于数据归一化以及Python实现方式

    数据归一化: 数据的标准化是将数据按比例缩放,使之落入一个小的特定区间,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权. 为什么要做归一化: 1)加快梯度下降求最优解的速度 如果两个特征的区间相差非常大,其所形成的等高线非常尖,很有可能走"之字型"路线(垂直等高线走),从而导致需要迭代很多次才能收敛. 2)有可能提高精度 一些分类器需要计算样本之间的距离,如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时

  • TensorFlow实现批量归一化操作的示例

    批量归一化 在对神经网络的优化方法中,有一种使用十分广泛的方法--批量归一化,使得神经网络的识别准确度得到了极大的提升. 在网络的前向计算过程中,当输出的数据不再同一分布时,可能会使得loss的值非常大,使得网络无法进行计算.产生梯度爆炸的原因是因为网络的内部协变量转移,即正向传播的不同层参数会将反向训练计算时参照的数据样本分布改变.批量归一化的目的,就是要最大限度地保证每次的正向传播输出在同一分布上,这样反向计算时参照的数据样本分布就会与正向计算时的数据分布一样了,保证分布的统一. 了解了原理

  • PHP实现的curl批量请求操作示例

    本文实例讲述了PHP实现的curl批量请求操作.分享给大家供大家参考,具体如下: <?php $ch = array(); $res = array(); $conn = array(); $urls = array( 'baidu' => "http://www.baidu.com/", 'cheyun' => "http://auto.jrj.com.cn/", 'w3c' => "http://www.w3cschool.cc

  • vue+element实现批量删除功能的示例

    今年开始学习vue+element实现后台开发,在实现批量删除功能时有2个小知识点记录在下: 1.如何实现单击行交替选中当前行的复选框,element官网的table实例中没有找到.--通过row-click和toggleRowSelection实现 2.如何获取选中行的值来实现批量删除.--通过selection-change实现 代码如下 html: <div class="row mt30 pl15"> <el-button type="warning

  • Tensorflow分批量读取数据教程

    之前的博客里使用tf读取数据都是每次fetch一条记录,实际上大部分时候需要fetch到一个batch的小批量数据,在tf中这一操作的明显变化就是tensor的rank发生了变化,我目前使用的人脸数据集是灰度图像,因此大小是92*112的,所以最开始fetch拿到的图像数据集经过reshape之后就是一个rank为2的tensor,大小是92*112的(如果考虑通道,也可以reshape为rank为3的,即92*112*1).如果加入batch,比如batch大小为5,那么拿到的tensor的r

  • 拿来就用!Python批量合并PDF的示例代码

    大家好,今天分享一个实用的办公脚本:将多个PDF合并为一个PDF,例如我手上现在有如下3个PDF分册,需要整合成一个完整的PDF 如果换成你操作的话,是不是打开百度搜索:PDF合并,然后去第三方网站操作,可能会收费不说还担心文件泄漏,现在有请Python出场,简单快速,光速合并,拿走就用! 首先导入需要的库和路径设置 import os from PyPDF2 import PdfFileReader, PdfFileWriter if __name__ == '__main__': # 设置存

  • Go语言操作数据库及其常规操作的示例代码

    Go操作MySQL 安装: go get -u github.com/go-sql-driver/mysql GO语言的操作数据库的驱动原生支持连接池, 并且是并发安全的 标准库没有具体的实现 只是列出了一些需要的第三方库实现的具体内容 //第一次连接MySQL成功 package main import ( "database/sql" _ "github.com/go-sql-driver/mysql" // _想当于init()初始化 "log&qu

  • Python深度学习理解pytorch神经网络批量归一化

    目录 训练深层网络 为什么要批量归一化层呢? 批量归一化层 全连接层 卷积层 预测过程中的批量归一化 使用批量归一化层的LeNet 简明实现 争议 训练深层神经网络是十分困难的,特别是在较短的实践内使他们收敛更加棘手.在本节中,我们将介绍批量归一化(batch normalization),这是一种流行且有效的技术,可持续加速深层网络的收敛速度.在结合之后将介绍的残差快,批量归一化使得研究人员能够训练100层以上的网络. 训练深层网络 为什么要批量归一化层呢? 让我们回顾一下训练神经网络时出现的

  • TensorFlow卷积神经网络MNIST数据集实现示例

    这里使用TensorFlow实现一个简单的卷积神经网络,使用的是MNIST数据集.网络结构为:数据输入层–卷积层1–池化层1–卷积层2–池化层2–全连接层1–全连接层2(输出层),这是一个简单但非常有代表性的卷积神经网络. import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True) print("MNIST ready&q

  • Python实现批量文件整理的示例代码

    目录 引言  一.准备工作 二.制作 excel 的文件清单 三.文件的批量重命名 四.文件的批量删除 引言  批量文件整理一直是日常工作中令人头疼的事,使用 Python 进行大批量文件整理,可以大大提升工作效率.下面来介绍几种批量文件整理的小技巧. 一.准备工作 为了用于实验,我们使用代码生成 200 个 txt 文件,代码如下. for i in range(0, 200): file_name = f'file_{i}.txt' f = open(f'./file/{file_name}

  • Python办公自动化批量处理文件实现示例

    目录 引言 需求分析 Python实现 结束语 引言 要说在工作中最让人头疼的就是用同样的方式处理一堆文件夹中文件,这并不难,但就是繁.所以在遇到机械式的操作时一定要记得使用Python来合理偷懒!今天我将以处理微博热搜数据来示例如何使用Python批量处理文件夹中的文件,主要将涉及: Python批量读取不同文件夹() Pandas数据处理() Python操作Markdown文件() 需求分析 首先来说明一下需要完成的任务,下面是我们的文件夹结构 因为微博历史热搜是没有办法去爬的,所以只能写

随机推荐