Cpy和Python的效率对比

Python 语言的初学者, 特别是"惊奇者"(也就是那种第一眼就被毫无意义的某些特性吸引, 之后持续说服自己的人)认为 Python 不需要 C 语言的 for 语句, 因为他们能用优雅的 Python for 来代替类 C 的 for.

Cpy 的循环方式:

代码如下:

for(i=s; i<num; i+=step){
}

Python 的循环方式:

代码如下:

for i in range(num)[s:e:step]:

最近, 我写了一个循环 100000000 遍的代码, 不幸的是(也正是所预计的), Python 把机器内存吃光了, 并让我的 Windows 报虚拟内存不足的错误. 可怜的 Python 只能被操作系统无情地 kill 掉而不给任何机会.

而 Cpy 的循环却毫无压力, 只占用了很小的内存.

(0)

相关推荐

  • 几个提升Python运行效率的方法之间的对比

    在我看来,python社区分为了三个流派,分别是python 2.x组织,3.x组织和PyPy组织.这个分类基本上可以归根于类库的兼容性和速度.这篇文章将聚焦于一些通用代码的优化技巧以及编译成C后性能的显著提升,当然我也会给出三大主要python流派运行时间.我的目的不是为了证明一个比另一个强,只是为了让你知道如何在不同的环境下使用这些具体例子作比较. 使用生成器 一个普遍被忽略的内存优化是生成器的使用.生成器让我们创建一个函数一次只返回一条记录,而不是一次返回所有的记录,如果你正在使用pyth

  • 使用优化器来提升Python程序的执行效率的教程

    如果不首先想想这句Knuth的名言,就开始进行优化工作是不明智的.可是,你很快写出来加入一些特性的代码,可能会很丑陋,你需要注意了.这篇文章就是为这时候准备的. 那么接下来就是一些很有用的工具和模式来快速优化Python.它的主要目的很简单:尽快发现瓶颈,修复它们并且确认你修复了它们. 写一个测试 在你开始优化前,写一个高级测试来证明原来代码很慢.你可能需要采用一些最小值数据集来复现它足够慢.通常一两个显示运行时秒的程序就足够处理一些改进的地方了. 有一些基础测试来保证你的优化没有改变原有代码的

  • 六个窍门助你提高Python运行效率

    不喜欢Python的人经常会吐嘈Python运行太慢.但是,事实并非如此.尝试以下六个窍门,来为你的Python应用提速. 窍门一:关键代码使用外部功能包 Python简化了许多编程任务,但是对于一些时间敏感的任务,它的表现经常不尽人意.使用C/C++或机器语言的外部功能包处理时间敏感任务,可以有效提高应用的运行效率.这些功能包往往依附于特定的平台,因此你要根据自己所用的平台选择合适的功能包.简而言之,这个窍门要你牺牲应用的可移植性以换取只有通过对底层主机的直接编程才能获得的运行效率.以下是一些

  • 十条建议帮你提高Python编程效率

    程序员的时间很宝贵,Python这门语言虽然足够简单.优雅,但并不是说你使用Python编程,效率就一定会高.要想节省时间.提高效率,还是需要注意很多地方的. 今天就与大家分享资深Python程序员总结的10点建议,帮助大家大幅节省开发时间. 1. 不使用分号 使用分号在 Python 中是可选的:与其他面向对象语言不同,你不需要在每一条语句后面使用分号. 这看起来很简单,似乎也节省不了多少时间:但一旦你的代码量扩展到数千号,这些分号就变得分心且没有必要键入. 2. 使用称手的代码编辑器 选择一

  • 提升Python程序运行效率的6个方法

    Python是一个很酷的语言,因为你可以在很短的时间内利用很少的代码做很多事情.不仅如此,它还能轻松地支持多任务,比如多进程等.Python批评者有时会说Python执行缓慢.本文将尝试介绍6个技巧,可加速你的Python应用程序. 1.让关键代码依赖于外部包 虽然Python让许多编程任务变得容易,但它可能并不总能为紧急的任务提供最佳性能.你可以为紧急的任务使用C.C++或机器语言编写的外部包,这样可以提高应用程序的性能.这些包都是不能跨平台的,这意味着你需要根据你正在使用的平台,寻找合适的包

  • 盘点提高 Python 代码效率的方法

    第一招:蛇打七寸:定位瓶颈 首先,第一步是定位瓶颈.举个简单的栗子,一个函数可以从1秒优化到到0.9秒,另一个函数可以从1分钟优化到30秒,如果要花的代价相同,而且时间限制只能搞定一个,搞哪个?根据短板原理,当然选第二个啦. 一个有经验的程序员在这里一定会迟疑一下,等等?函数?这么说,还要考虑调用次数?如果第一个函数在整个程序中需要被调用100000次,第二个函数在整个程序中被调用1次,这个就不一定了.举这个栗子,是想说明,程序的瓶颈有的时候不一定一眼能看出来.还是上面那个选择,程序员的你应该有

  • 在Python3中初学者应会的一些基本的提升效率的小技巧

    有时候我反问我自己,怎么不知道在Python 3中用更简单的方式做"这样"的事,当我寻求答案时,随着时间的推移,我当然发现更简洁.有效并且bug更少的代码.总的来说(不仅仅是这篇文章),"那些"事情总共数量是超过我想象的,但这里是第一批不明显的特性,后来我寻求到了更有效的/简单的/可维护的代码. 字典 字典中的keys()和items() 你能在字典的keys和items中做很多有意思的操作,它们类似于集合(set): aa = {'mike': 'male', '

  • 教你用Type Hint提高Python程序开发效率

    简介 Type Hint(或者叫做PEP-484)提供了一种针对Python程序的类型标注标准. 为什么使用Type Hint?对于动态语言而言,常常出现的情况是当你写了一段代码后,隔段时间你可能忘记这个方法的原型是什么样子的了,你也不清楚具体应该传入什么类型的参数,这样往往需要你去阅读代码才能定义每个类型具体是什么.或者当你使用一个文档并不是特别完全的第三方库,你不知道这个库应该如何使用,这都会很痛苦. 现在,借助Type Hint,你可以实现: 1.实现类型检查,防止运行时出现的类型不符合情

  • 探究数组排序提升Python程序的循环的运行效率的原因

    早上我偶然看见一篇介绍两个Python脚本的博文,其中一个效率更高.这篇博文已经被删除,所以我没办法给出文章链接,但脚本基本可以归结如下: fast.py import time a = [i for i in range(1000000)] sum = 0 t1 = time.time() for i in a: sum = sum + i t2 = time.time() print t2-t1 slow.py import time from random import shuffle a

  • Cpy和Python的效率对比

    Python 语言的初学者, 特别是"惊奇者"(也就是那种第一眼就被毫无意义的某些特性吸引, 之后持续说服自己的人)认为 Python 不需要 C 语言的 for 语句, 因为他们能用优雅的 Python for 来代替类 C 的 for. Cpy 的循环方式: 复制代码 代码如下: for(i=s; i<num; i+=step){ } Python 的循环方式: 复制代码 代码如下: for i in range(num)[s:e:step]: 最近, 我写了一个循环 100

  • Python 多线程抓取图片效率对比

    目的: 是学习python 多线程的工作原理,及通过抓取400张图片这种IO密集型应用来查看多线程效率对比 import requests import urlparse import os import time import threading import Queue path = '/home/lidongwei/scrapy/owan_img_urls.txt' #path = '/home/lidongwei/scrapy/cc.txt' fetch_img_save_path =

  • Python中单线程、多线程和多进程的效率对比实验实例

    python的多进程性能要明显优于多线程,因为cpython的GIL对性能做了约束. Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势.而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率. 对比实验 资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程:如果是IO密集型,多线程进程可以利用I

  • 关于Python中的向量相加和numpy中的向量相加效率对比

    直接使用Python来实现向量的相加 # -*-coding:utf-8-*- #向量相加 def pythonsum(n): a = range(n) b = range(n) c = [] for i in range(len(a)): a[i] = i**2 b[i] = i**3 c.append(a[i]+b[i]) return a,b,c print pythonsum(4),type(pythonsum(4)) for arg in pythonsum(4): print arg

  • 关于Django ForeignKey 反向查询中filter和_set的效率对比详解

    前言 大家使用 Django 创建模型的时候一定会经常使用 ForeignKey 来创建两个表格之间多对一的外键关系,例如B中有一个 models.ForeignKey(A) .而当我们需要反向查询 A 中某个具体实例所关联的 B 时,可能会用到 A.B_set.all() 或 B.objects.filter(A) 这两种不同的方法. 不知道大家有没有也想过一个问题:当网站实际上线后,SEO强调页面加载速度,而当面对不断增大的请求量,这两种方法的哪一种速度更快? 馆主我产生了这个疑问,所以就打

  • python绘制分组对比柱状图

    本文实例为大家分享了python绘制分组对比柱状图的具体代码,供大家参考,具体内容如下 首先放效果图:  # -*- coding: utf-8 -*- import numpy as np   import tensorflow as tf from matplotlib.path import Path from matplotlib.patches import PathPatch import matplotlib.pyplot as plt import matplotlib from

  • PHP遍历数组的三种方法及效率对比分析

    本文实例分析了PHP遍历数组的三种方法及效率对比.分享给大家供大家参考.具体分析如下: 今天有个朋友问我一个问题php遍历数组的方法,告诉她了几个.顺便写个文章总结下,如果总结不全还请朋友们指出 第一.foreach() foreach()是一个用来遍历数组中数据的最简单有效的方法. <?php $urls= array('aaa','bbb','ccc','ddd'); foreach ($urls as $url){ echo "This Site url is $url! <b

  • MySQL中使用or、in与union all在查询命令下的效率对比

    OR.in和union all 查询效率到底哪个快? 网上很多的声音都是说union all 快于 or.in,因为or.in会导致全表扫描,他们给出了很多的实例. 但真的union all真的快于or.in? EXPLAIN SELECT * from employees where employees.first_NAME ='Georgi' UNION ALL SELECT * from employees where employees.first_NAME ='Bezalel' 这条语

  • php使用file函数、fseek函数读取大文件效率对比分析

    php读取大文件可以使用file函数和fseek函数,但是二者之间效率可能存在差异,本文章向大家介绍php file函数与fseek函数实现大文件读取效率对比分析,需要的朋友可以参考一下. 1. 直接采用file函数来操作 由于 file函数是一次性将所有内容读入内存,而PHP为了防止一些写的比较糟糕的程序占用太多的内存而导致系统内存不足,使服务器出现宕机,所以默认情况下限制只能最大使用内存16M,这是通过php.ini里的 memory_limit = 16M 来进行设置,这个值如果设置-1,

随机推荐