Python解析器Cpython的GIL解释器锁工作机制

目录
  • 本节重点
    • 一 引子
    • 二 GIL介绍
    • 三 GIL与Lock
    • 四 GIL与多线程
    • 五 多线程性能测试

本节重点

  • 掌握Cpython的GIL解释器锁的工作机制
  • 掌握GIL与互斥锁
  • 掌握Cpython下多线程与多进程各自的应用场景

本节时长需控制在45分钟内

一 引子

定义:

In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple 
native threads from executing Python bytecodes at once. This lock is necessary mainly 
because CPython’s memory management is not thread-safe. (However, since the GIL 
exists, other features have grown to depend on the guarantees that it enforces.)

结论:在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势

首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。

有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。

像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。

所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。

所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL

二 GIL介绍

GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。

可以肯定的一点是:保护不同的数据的安全,就应该加不同的锁。

要想了解GIL,首先确定一点:每次执行python程序,都会产生一个独立的进程。例如python test.py,python aaa.py,python bbb.py会产生3个不同的python进程

验证python test.py只会产生一个进程

#test.py内容
import os,time
print(os.getpid())
time.sleep(1000)
#打开终端执行
python3 test.py
#在windows下查看
tasklist |findstr python
#在linux下下查看
ps aux |grep python

在一个python的进程内,不仅有test.py的主线程或者由该主线程开启的其他线程,还有解释器开启的垃圾回收等解释器级别的线程,总之,所有线程都运行在这一个进程内,毫无疑问

1、所有数据都是共享的,这其中,代码作为一种数据也是被所有线程共享的(test.py的所有代码以及Cpython解释器的所有代码)

例如:test.py定义一个函数work(代码内容如下图),在进程内所有线程都能访问到work的代码,于是我们可以开启三个线程然后target都指向该代码,能访问到意味着就是可以执行。

2、所有线程的任务,都需要将任务的代码当做参数传给解释器的代码去执行,即所有的线程要想运行自己的任务,首先需要解决的是能够访问到解释器的代码。

综上:

如果多个线程的target=work,那么执行流程是

多个线程先访问到解释器的代码,即拿到执行权限,然后将target的代码交给解释器的代码去执行

解释器的代码是所有线程共享的,所以垃圾回收线程也可能访问到解释器的代码而去执行,这就导致了一个问题:对于同一个数据100,可能线程1执行x=100的同时,而垃圾回收执行的是回收100的操作,解决这种问题没有什么高明的方法,就是加锁处理,如下图的GIL,保证python解释器同一时间只能执行一个任务的代码

三 GIL与Lock

机智的同学可能会问到这个问题:Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock?

首先,我们需要达成共识:锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据

然后,我们可以得出结论:保护不同的数据就应该加不同的锁。

最后,问题就很明朗了,GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock,如下图

分析:

1、100个线程去抢GIL锁,即抢执行权限

2、肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()

3、极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL

4、直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程

代码示范

from threading import Thread,Lock
import os,time
def work():
    global n
    lock.acquire()
    temp=n
    time.sleep(0.1)
    n=temp-1
    lock.release()
if __name__ == '__main__':
    lock=Lock()
    n=100
    l=[]
    for i in range(100):
        p=Thread(target=work)
        l.append(p)
        p.start()
    for p in l:
        p.join()
    print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全,不加锁则结果可能为99

四 GIL与多线程

有了GIL的存在,同一时刻同一进程中只有一个线程被执行

听到这里,有的同学立马质问:进程可以利用多核,但是开销大,而python的多线程开销小,但却无法利用多核优势,也就是说python没用了,php才是最牛逼的语言?

别着急啊,老娘还没讲完呢。

要解决这个问题,我们需要在几个点上达成一致:

1、cpu到底是用来做计算的,还是用来做I/O的?

2、多cpu,意味着可以有多个核并行完成计算,所以多核提升的是计算性能

3、每个cpu一旦遇到I/O阻塞,仍然需要等待,所以多核对I/O操作没什么用处

一个工人相当于cpu,此时计算相当于工人在干活,I/O阻塞相当于为工人干活提供所需原材料的过程,工人干活的过程中如果没有原材料了,则工人干活的过程需要停止,直到等待原材料的到来。

如果你的工厂干的大多数任务都要有准备原材料的过程(I/O密集型),那么你有再多的工人,意义也不大,还不如一个人,在等材料的过程中让工人去干别的活,

反过来讲,如果你的工厂原材料都齐全,那当然是工人越多,效率越高

结论:

1、对计算来说,cpu越多越好,但是对于I/O来说,再多的cpu也没用

2、当然对运行一个程序来说,随着cpu的增多执行效率肯定会有所提高(不管提高幅度多大,总会有所提高),这是因为一个程序基本上不会是纯计算或者纯I/O,所以我们只能相对的去看一个程序到底是计算密集型还是I/O密集型,从而进一步分析python的多线程到底有无用武之地

假设我们有四个任务需要处理,处理方式肯定是要玩出并发的效果,解决方案可以是:

方案一:开启四个进程

方案二:一个进程下,开启四个线程

  • 单核情况下,分析结果:

如果四个任务是计算密集型,没有多核来并行计算,方案一徒增了创建进程的开销,方案二胜

如果四个任务是I/O密集型,方案一创建进程的开销大,且进程的切换速度远不如线程,方案二胜

  • 多核情况下,分析结果:

如果四个任务是计算密集型,多核意味着并行计算,在python中一个进程中同一时刻只有一个线程执行用不上多核,方案一胜

如果四个任务是I/O密集型,再多的核也解决不了I/O问题,方案二胜

结论:

现在的计算机基本上都是多核,python对于计算密集型的任务开多线程的效率并不能带来多大性能上的提升,甚至不如串行(没有大量切换),但是,对于IO密集型的任务效率还是有显著提升的。

五 多线程性能测试

如果并发的多个任务是计算密集型:多进程效率高

from multiprocessing import Process
from threading import Thread
import os,time
def work():
    res=0
    for i in range(100000000):
        res*=i
if __name__ == '__main__':
    l=[]
    print(os.cpu_count()) #本机为4核
    start=time.time()
    for i in range(4):
        p=Process(target=work) #耗时5s多
        p=Thread(target=work) #耗时18s多
        l.append(p)
        p.start()
    for p in l:
        p.join()
    stop=time.time()
    print('run time is %s' %(stop-start))

如果并发的多个任务是I/O密集型:多线程效率高

from multiprocessing import Process
from threading import Thread
import threading
import os,time
def work():
    time.sleep(2)
    print('===>')
if __name__ == '__main__':
    l=[]
    print(os.cpu_count()) #本机为4核
    start=time.time()
    for i in range(400):
        # p=Process(target=work) #耗时12s多,大部分时间耗费在创建进程上
        p=Thread(target=work) #耗时2s多
        l.append(p)
        p.start()
    for p in l:
        p.join()
    stop=time.time()
    print('run time is %s' %(stop-start))

应用:

多线程用于IO密集型,如socket,爬虫,web

多进程用于计算密集型,如金融分析

以上就是Python解析器Cpython的GIL解释器锁工作机制的详细内容,更多关于Python Cpython解释器锁GIL的资料请关注我们其它相关文章!

(0)

相关推荐

  • 详解Python中的GIL(全局解释器锁)详解及解决GIL的几种方案

    先看一道GIL面试题: 描述Python GIL的概念, 以及它对python多线程的影响?编写一个多线程抓取网页的程序,并阐明多线程抓取程序是否可比单线程性能有提升,并解释原因. GIL:又叫全局解释器锁,每个线程在执行的过程中都需要先获取GIL,保证同一时刻只有一个线程在运行,目的是解决多线程同时竞争程序中的全局变量而出现的线程安全问题.它并不是python语言的特性,仅仅是由于历史的原因在CPython解释器中难以移除,因为python语言运行环境大部分默认在CPython解释器中. 通过

  • 对Python中GIL(全局解释器锁)的一点理解浅析

    目录 前言 为什么需要 GIL GIL 的实现 几点说明 GIL 优化 用户数据的一致性不能依赖 GIL 总结 参考文档 前言 GIL(Global Interpreter Lock),全局解释器锁,是 CPython 为了避免在多线程环境下造成 Python 解释器内部数据的不一致而引入的一把锁,让 Python 中的多个线程交替运行,避免竞争. 需要说明的是 GIL 不是 Python 语言规范的一部分,只是由于 CPython 实现的需要而引入的,其他的实现如 Jython 和 PyPy

  • Cpython解释器中的GIL全局解释器锁

    1.什么是GIL全局解释器锁 GIL:Global Interpreter Lock,意思就是全局解释器锁,这个GIL并不是Python的特性,他是只在Cpython解释器里引入的一个概念,而在其他的语言编写的解释器里就没有GIL,例如:Jython,Pypy等 下面是官方给出的解释: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from exe

  • 利用一个简单的例子窥探CPython内核的运行机制

    我最近花了一些时间在探索CPython,并且我想要在这里分享我的一些冒险经历.Allison Kaptur的excellent guide to getting started with Python internals有一点啰嗦,我想逐步介绍我自己的探索过程会更加有条理性,这样也许其他好奇的Python使用者可以跟着一起做. 1.注意到了一些奇怪的事情 一开始,我只是设置好Nose对一些我写的Python 3代码进行测试.当我运行这些测试的时候,我得到了一个不可思议的错误信息:"TypeErr

  • Python解析器Cpython的GIL解释器锁工作机制

    目录 本节重点 一 引子 二 GIL介绍 三 GIL与Lock 四 GIL与多线程 五 多线程性能测试 本节重点 掌握Cpython的GIL解释器锁的工作机制 掌握GIL与互斥锁 掌握Cpython下多线程与多进程各自的应用场景 本节时长需控制在45分钟内 一 引子 定义: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing

  • Python并发编程多进程,多线程及GIL全局解释器锁

    目录 1. 并发与并行 2. 线程与进程的应用场景 2.1. 并行/并发编程相关的技术栈 3. Python中的GIL是什么,它影响什么 1. 并发与并行 所谓的并行(Parallelism),就是多个彼此独立的任务可以同时一起执行,彼此并不相互干扰,并行强调的是同时且独立的运行,彼此不需要协作. 而所谓并发(Concurrency),则是多个任务彼此交替执行,但是同一时间只能有一个处于运行状态,并发执行强调任务之间的彼此协作. 并发通常被误解为并行,并发实际是隐式的调度独立的代码,以协作的方式

  • Python学习之线程池与GIL全局锁详解

    目录 线程池 线程池的创建 - concurrent 线程池的常用方法 线程池演示案例 线程锁 利用线程池实现抽奖小案例 GIL全局锁 GIL 的作用 线程池 线程池的创建 - concurrent concurrent 是 Python 的内置包,使用它可以帮助我们完成创建线程池的任务. 方法名 介绍 示例 futures.ThreadPoolExecutor 创建线程池 tpool=ThreadPoolExecutor(max_workers) 通过调用 concurrent 包的 futu

  • 仅用500行Python代码实现一个英文解析器的教程

    语法分析器描述了一个句子的语法结构,用来帮助其他的应用进行推理.自然语言引入了很多意外的歧义,以我们对世界的了解可以迅速地发现这些歧义.举一个我很喜欢的例子: 正确的解析是连接"with"和"pizza",而错误的解析将"with"和"eat"联系在了一起: 过去的一些年,自然语言处理(NLP)社区在语法分析方面取得了很大的进展.现在,小小的 Python 实现可能比广泛应用的 Stanford 解析器表现得更出色. 文章剩下

  • Python编程中Python与GIL互斥锁关系作用分析

    我们知道,在 CPython 中,有一个全局解释器锁,英文叫 global interpreter lock,简称 GIL,是一个互斥锁,用来保护 Python 世界里的对象,防止同一时刻多个线程执行 Python 的字节码,从而确保线程安全,这导致了 Python 的线程无法利用多核 CPU 的优势,因此有人说 Python 的多线程是伪多线程,性能不高,那么 Python 将来有可能去除 GIL 吗? 要回答这个问题,先从 GIL 的起源进行分析. GIL 的起源 Python 第一次发布是

  • Python HTML解析器BeautifulSoup用法实例详解【爬虫解析器】

    本文实例讲述了Python HTML解析器BeautifulSoup用法.分享给大家供大家参考,具体如下: BeautifulSoup简介 我们知道,Python拥有出色的内置HTML解析器模块--HTMLParser,然而还有一个功能更为强大的HTML或XML解析工具--BeautifulSoup(美味的汤),它是一个第三方库.简单来说,BeautifulSoup最主要的功能是从网页抓取数据.本文我们来感受一下BeautifulSoup的优雅而强大的功能吧! BeautifulSoup安装 B

  • Python网页解析器使用实例详解

    python 网页解析器 1.常见的python网页解析工具有:re正则匹配.python自带的html.parser模块.第三方库BeautifulSoup(重点学习)以及lxm库. 2.常见网页解析器分类 (1)模糊匹配 :re正则表达式即为字符串式的模糊匹配模式: (2)结构化解析: BeatufiulSoup.html.parser与lxml,他们都以DOM树结构为标准,进行标签结构信息的提取. 3.DOM树解释:即文档对象模型(Document Object Model),其树形标签结

随机推荐