yolov5中anchors设置实例详解

目录
  • 一、默认锚定框
  • 二、自定义锚定框
    • 1、训练时自动计算锚定框
    • 2、训练前手动计算锚定框
  • 参考的博文(表示感谢!):
  • 总结

yolov5中增加了自适应锚定框(Auto Learning Bounding Box Anchors),而其他yolo系列是没有的。

一、默认锚定框

Yolov5 中默认保存了一些针对 coco数据集的预设锚定框,在 yolov5 的配置文件*.yaml 中已经预设了640×640图像大小下锚定框的尺寸(以 yolov5s.yaml 为例):

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

anchors参数共有三行,每行9个数值;且每一行代表应用不同的特征图;

1、第一行是在最大的特征图上的锚框

2、第二行是在中间的特征图上的锚框

3、第三行是在最小的特征图上的锚框;

在目标检测任务中,一般希望在大的特征图上去检测小目标,因为大特征图才含有更多小目标信息,因此大特征图上的anchor数值通常设置为小数值,而小特征图上数值设置为大数值检测大的目标。

二、自定义锚定框

1、训练时自动计算锚定框

yolov5 中不是只使用默认锚定框,在开始训练之前会对数据集中标注信息进行核查,计算此数据集标注信息针对默认锚定框的最佳召回率,当最佳召回率大于或等于0.98,则不需要更新锚定框;如果最佳召回率小于0.98,则需要重新计算符合此数据集的锚定框。

核查锚定框是否适合要求的函数在 /utils/autoanchor.py 文件中:

def check_anchors(dataset, model, thr=4.0, imgsz=640):

其中 thr 是指 数据集中标注框宽高比最大阈值,默认是使用 超参文件 hyp.scratch.yaml 中的 “anchor_t” 参数值。

核查主要代码如下:

    def metric(k):  # compute metric
        r = wh[:, None] / k[None]
        x = torch.min(r, 1. / r).min(2)[0]  # ratio metric
        best = x.max(1)[0]  # best_x
        aat = (x > 1. / thr).float().sum(1).mean()  # anchors above threshold
        bpr = (best > 1. / thr).float().mean()  # best possible recall
        return bpr, aat

    bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))

其中两个指标需要解释一下(bpr 和 aat):

bpr(best possible recall)

aat(anchors above threshold)

其中 bpr 参数就是判断是否需要重新计算锚定框的依据(是否小于 0.98)。

重新计算符合此数据集标注框的锚定框,是利用 kmean聚类方法实现的,代码在  /utils/autoanchor.py 文件中:

def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
    """ Creates kmeans-evolved anchors from training dataset
        Arguments:
            path: path to dataset *.yaml, or a loaded dataset
            n: number of anchors
            img_size: image size used for training
            thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
            gen: generations to evolve anchors using genetic algorithm
            verbose: print all results
        Return:
            k: kmeans evolved anchors
        Usage:
            from utils.autoanchor import *; _ = kmean_anchors()
    """
    thr = 1. / thr
    prefix = colorstr('autoanchor: ')

    def metric(k, wh):  # compute metrics
        r = wh[:, None] / k[None]
        x = torch.min(r, 1. / r).min(2)[0]  # ratio metric
        # x = wh_iou(wh, torch.tensor(k))  # iou metric
        return x, x.max(1)[0]  # x, best_x

    def anchor_fitness(k):  # mutation fitness
        _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
        return (best * (best > thr).float()).mean()  # fitness

    def print_results(k):
        k = k[np.argsort(k.prod(1))]  # sort small to large
        x, best = metric(k, wh0)
        bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thr
        print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
        print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
              f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
        for i, x in enumerate(k):
            print('%i,%i' % (round(x[0]), round(x[1])), end=',  ' if i < len(k) - 1 else '\n')  # use in *.cfg
        return k

    if isinstance(path, str):  # *.yaml file
        with open(path) as f:
            data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # model dict
        from utils.datasets import LoadImagesAndLabels
        dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
    else:
        dataset = path  # dataset

    # Get label wh
    shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
    wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])  # wh

    # Filter
    i = (wh0 < 3.0).any(1).sum()
    if i:
        print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
    wh = wh0[(wh0 >= 2.0).any(1)]  # filter > 2 pixels
    # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1)  # multiply by random scale 0-1

    # Kmeans calculation
    print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
    s = wh.std(0)  # sigmas for whitening
    k, dist = kmeans(wh / s, n, iter=30)  # points, mean distance
    k *= s
    wh = torch.tensor(wh, dtype=torch.float32)  # filtered
    wh0 = torch.tensor(wh0, dtype=torch.float32)  # unfiltered
    k = print_results(k)

    # Plot
    # k, d = [None] * 20, [None] * 20
    # for i in tqdm(range(1, 21)):
    #     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance
    # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
    # ax = ax.ravel()
    # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
    # fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh
    # ax[0].hist(wh[wh[:, 0]<100, 0],400)
    # ax[1].hist(wh[wh[:, 1]<100, 1],400)
    # fig.savefig('wh.png', dpi=200)

    # Evolve
    npr = np.random
    f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigma
    pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:')  # progress bar
    for _ in pbar:
        v = np.ones(sh)
        while (v == 1).all():  # mutate until a change occurs (prevent duplicates)
            v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
        kg = (k.copy() * v).clip(min=2.0)
        fg = anchor_fitness(kg)
        if fg > f:
            f, k = fg, kg.copy()
            pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
            if verbose:
                print_results(k)

    return print_results(k)

对 kmean_anchors()函数中的参数做一下简单解释(代码中已经有了英文注释):

  • path:包含数据集文件路径等相关信息的 yaml 文件(比如 coco128.yaml), 或者 数据集张量(yolov5 自动计算锚定框时就是用的这种方式,先把数据集标签信息读取再处理)
  • n:锚定框的数量,即有几组;默认值是9
  • img_size:图像尺寸。计算数据集样本标签框的宽高比时,是需要缩放到 img_size 大小后再计算的;默认值是640
  • thr:数据集中标注框宽高比最大阈值,默认是使用 超参文件 hyp.scratch.yaml 中的 “anchor_t” 参数值;默认值是4.0;自动计算时,会自动根据你所使用的数据集,来计算合适的阈值。
  • gen:kmean聚类算法迭代次数,默认值是1000
  • verbose:是否打印输出所有计算结果,默认值是true

如果你不想自动计算锚定框,可以在 train.py 中设置参数即可:

parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')

2、训练前手动计算锚定框

如果使用 yolov5 训练效果并不好(排除其他原因,只考虑 “预设锚定框” 这个因素), yolov5在核查默认锚定框是否符合要求时,计算的最佳召回率大于0.98,没有自动计算锚定框;此时你可以自己手动计算锚定框。【即使自己的数据集中目标宽高比最大值小于4,默认锚定框也不一定是最合适的】

首先可以自行编写一个程序,统计一下你所训练的数据集所有标签框宽高比,看下宽高比主要分布在哪个范围、最大宽高比是多少? 比如:你使用的数据集中目标宽高比最大达到了 5:1(甚至 10:1) ,那肯定需要重新计算锚定框了,针对coco数据集的最大宽高比是 4:1 。

然后在 yolov5 程序中创建一个新的 python 文件 test.py,手动计算锚定框:

import utils.autoanchor as autoAC

# 对数据集重新计算 anchors
new_anchors = autoAC.kmean_anchors('./data/mydata.yaml', 9, 640, 5.0, 1000, True)
print(new_anchors)

输入信息如下(只截取了部分):

autoanchor: Evolving anchors with Genetic Algorithm: fitness = 0.6604:  87%|████████▋ | 866/1000 [00:00<00:00, 2124.00it/s]autoanchor: thr=0.25: 0.9839 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.662-mean/best, past_thr=0.476-mean: 15,20,  38,25,  55,65,  131,87,  97,174,  139,291,  256,242,  368,382,  565,422
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  39,26,  54,64,  127,87,  97,176,  142,286,  257,245,  374,379,  582,424
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  39,26,  54,63,  126,86,  97,176,  143,285,  258,241,  369,381,  583,424
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  39,26,  54,63,  127,86,  97,176,  143,285,  258,241,  369,380,  583,424
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  39,26,  53,63,  127,86,  97,175,  143,284,  257,243,  369,381,  582,422
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  40,26,  53,62,  129,85,  96,175,  143,287,  256,240,  370,378,  582,419
autoanchor: Evolving anchors with Genetic Algorithm: fitness = 0.6605: 100%|██████████| 1000/1000 [00:00<00:00, 2170.29it/s]
Scanning '..\coco128\labels\train2017.cache' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100%|██████████| 128/128 [00:00<?, ?it/s]
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  40,26,  53,62,  129,85,  96,175,  143,287,  256,240,  370,378,  582,419
[[     14.931      20.439]
 [     39.648       25.53]
 [     53.371       62.35]
 [     129.07      84.774]
 [     95.719      175.08]
 [     142.69      286.95]
 [     256.46      239.83]
 [      369.9       378.3]
 [     581.87      418.56]]
 
Process finished with exit code 0

输出的 9 组新的锚定框即是根据自己的数据集来计算的,可以按照顺序替换到你所使用的配置文件*.yaml中(比如 yolov5s.yaml)。就可以重新训练了。

参考的博文(表示感谢!):

https://github.com/ultralytics/yolov5

https://blog.csdn.net/flyfish1986/article/details/117594265

https://zhuanlan.zhihu.com/p/183838757

https://blog.csdn.net/aabbcccddd01/article/details/109578614

总结

到此这篇关于yolov5中anchors设置详解的文章就介绍到这了,更多相关yolov5 anchors设置内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Yolov5服务器环境搭建详细过程

    目录 1 服务器搭建yolov5环境 1.1 创建环境 1.2 跟随官方指引 2 下载预训练权重 3 推理 4 测试 1 服务器搭建yolov5环境 1.1 创建环境 首先先的在本地环境下搭建一个我们的环境,名字设为yolo5-6 conda create -n yolov5-6 python=3.7#创建环境 conda activate yolov5-6#切换yolov5-6环境 创建包完成后,我们需要查看conda环境下是否有我们刚才创建的环境,通过以下的指令可以查看所有的环境. cond

  • yolov5中anchors设置实例详解

    目录 一.默认锚定框 二.自定义锚定框 1.训练时自动计算锚定框 2.训练前手动计算锚定框 参考的博文(表示感谢!): 总结 yolov5中增加了自适应锚定框(Auto Learning Bounding Box Anchors),而其他yolo系列是没有的. 一.默认锚定框 Yolov5 中默认保存了一些针对 coco数据集的预设锚定框,在 yolov5 的配置文件*.yaml 中已经预设了640×640图像大小下锚定框的尺寸(以 yolov5s.yaml 为例): # anchors anc

  • C++ 中构造函数的实例详解

    C++ 中构造函数的实例详解 c++构造函数的知识在各种c++教材上已有介绍,不过初学者往往不太注意观察和总结其中各种构造函数的特点和用法,故在此我根据自己的c++编程经验总结了一下c++中各种构造函数的特点,并附上例子,希望对初学者有所帮助. 1. 构造函数是干什么的 class Counter { public: // 类Counter的构造函数 // 特点:以类名作为函数名,无返回类型 Counter() { m_value = 0; } private: // 数据成员 int m_va

  • IOS 开发之swift中手势的实例详解

    IOS 开发之swift中手势的实例详解 手势操作主要包括如下几类 手势 属性 说明 点击 UITapGestureRecognizer numberOfTapsRequired:点击的次数:numberOfTouchesRequired:点击时有手指数量 设置属性 numberOfTapsRequired 可以实现单击,或双击的效果 滑动 UISwipeGestureRecognizer direction:滑动方向 direction 滑动方向分为上Up.下Down.左Left.右Right

  • Java中File的实例详解

    Java中File的实例详解 File 代表文件或者目录的类 构造函数 File(File parent,String child)---代表了指定父目录下的指定的子文件或者子目录 File(String pathname)---代表了指定路径对应的文件或者目录对象 重要方法 创建 createNewFile()---只能用来创建文件,并且一次只能创建一个文件,要求文件存储的目录必须真实存在 mkdir()---只能用来创建目录,不能用来创建多层目录 mkdirs()---创建多层目录 删除 d

  • 浅谈JAVA中输入输出流实例详解

    java语言的输入输出功能是十分强大而灵活的,美中不足的是看上去输入输出的代码并不是很简洁,因为你往往需要包装许多不同的对象.在Java类库中,IO部分的内容是很庞大的,因为它涉及的领域很广泛:标准输入输出,文件的操作,网络上的数据流,字符串流,对象流,zip文件流....本文的目的是为大家介绍JAVA中输入输出流实例详解. 流的层次结构 定义:        java将读取数据对象成为输入流,能向其写入的对象叫输出流.结构图如下: 1.输入输出: 输入/输出(Input/Output)是指对某

  • C++ 中 socket编程实例详解

    C++ 中 socket编程实例详解 sockets(套接字)编程有三种,流式套接字(SOCK_STREAM),数据报套接字(SOCK_DGRAM),原始套接字(SOCK_RAW):基于TCP的socket编程是采用的流式套接字.在这个程序中,将两个工程添加到一个工作区.要链接一个ws2_32.lib的库文件. 服务器端编程的步骤: 1:加载套接字库,创建套接字(WSAStartup()/socket()): 2:绑定套接字到一个IP地址和一个端口上(bind()): 3:将套接字设置为监听模式

  • C++中友元的实例详解

    C++中友元的实例详解 尽管友元被授予从外部访问类的私有部分的权限,但他们并不与面向对象的编程思想相悖:相反他提高了公共接口的灵活性. 一.友元类 友元声明可以位于公有.私有活保护部分.其所在位置无关紧要 我直接贴出一个摘自< c++ primer plus >的例子来演示 c++ 友元类 其中 Remote 为 Tv的友元类. Tv.h #ifndef TV_H_ #define TV_H_ /*一个类 电视 */ class Tv { public: friend class Remote

  • Spring boot跨域设置实例详解

    定义:跨域是指从一个域名的网页去请求另一个域名的资源 1.原由 公司内部有多个不同的子域,比如一个是location.company.com ,而应用是放在app.company.com , 这时想从 app.company.com去访问 location.company.com 的资源就属于跨域 本人是springboot菜鸟,但是做测试框架后端需要使用Springboot和前端对接,出现跨域问题,需要设置后端Response的Header.走了不少坑,在这总结一下以备以后使用 2.使用场景

  • Vue 中axios配置实例详解

    1.GET 请求 //向具有指定ID的用户发出请求 axios.get('/user?ID=12345') .then(function (response) { console.log(response); }) .catch(function (error) { console.log(error); }); // 也可以通过 params 对象传递参数 axios.get('/user', { params: { ID: 12345 } }) .then(function (respons

  • python open函数中newline参数实例详解

    目录 问题的由来 具体实例 总结 问题的由来 我在读pythoncsv模块文档 看到了这样一句话 如果 csvfile 是文件对象,则打开它时应使用 newline=‘’.其备注:如果没有指定 newline=‘’,则嵌入引号中的换行符将无法正确解析,并且在写入时,使用 \r\n 换行的平台会有多余的 \r 写入.由于 csv 模块会执行自己的(通用)换行符处理,因此指定 newline=‘’ 应该总是安全的. 我就在思考open函数中的newline参数的作用,因为自己之前在使用open函数时

随机推荐