Python Pandas工具绘制数据图使用教程

目录
  • 背景介绍
  • 折线图
  • 条形图
  • 水平条形图
  • 堆积图
  • 散点图
  • 饼图
  • 蜂巢图
  • 箱线图
  • 绘制子图

背景介绍

Pandas的DataFrame和Series在Matplotlib基础上封装了一个简易的绘图函数,使得数据处理过程中方便可视化查看结果。

折线图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data=np.random.randn(5,2)*10
df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=[1,2])
df.plot()
plt.show()

条形图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data=np.random.randn(5,2)*10
df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=[1,2])
df.plot(kind='bar')
plt.show()

水平条形图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data=np.random.randn(5,2)*10
df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=[1,2])
df.plot(kind='barh')
plt.show()

堆积图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data=np.random.randn(5,2)*10
df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=[1,2])
df.plot(kind='bar',stacked=True)
plt.show()

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data=np.random.randn(5,2)*10
df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=[1,2])
df.plot(kind='barh',stacked=True)
plt.show()

散点图

数据通常是一些点的集合

常用来绘制各种相关性,适合研究不同变量间的关系

  • x:x坐标位置
  • y:y坐标位置
  • s:散点的大小
  • c:散点颜色
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data=np.random.randn(5,2)*10
df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=['A','B'])
df.plot(kind='scatter',x='A',y='B',s=df.A*100,c='red')
plt.show()

饼图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.Series(3*np.random.rand(4),index=['a','b','c','d'])
df.plot.pie(figsize=(6,6))
plt.show()

蜂巢图

体现数据出现的次数

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.DataFrame(np.random.randn(1000,2),columns=['a','b'])
df.plot.hexbin(x='a',y='b',sharex=False,gridsize=30)
plt.show()

箱线图

基于最小值、上四分位、中位数、下四分位和最大值5个数值特征展示数据分布的标准方式,可以看出数据是否具有对称性,适用于展示一组数据的分布情况

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.DataFrame(np.random.randn(1000,2),columns=['a','b'])
df.plot(y=df.columns,kind='box',vert=False)
plt.show()

绘制子图

subplots:默认False 若每列绘制子图就为True

layout:子图布局

figsize:画布大小

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.DataFrame(np.random.randn(5,2),columns=['a','b'])
df.plot(subplots=True,layout=(2,3),figsize=(10,10),kind='bar')
plt.show()

以上就是Python Pandas工具绘制数据图使用教程的详细内容,更多关于Python Pandas 绘制图的资料请关注我们其它相关文章!

(0)

相关推荐

  • python绘图pyecharts+pandas的使用详解

    pyecharts介绍 pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 JS 库.用 Echarts 生成的图可视化效果非常棒 为避免绘制缺漏,建议全部安装 为了避免下载缓慢,作者全部使用镜像源下载过了 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-countries-pypkg pip install -i https://pypi.tuna.tsin

  • python之 matplotlib和pandas绘图教程

    不得不说使用python库matplotlib绘图确实比较丑,但使用起来还算是比较方便,做自己的小小研究可以使用.这里记录一些统计作图方法,包括pandas作图和plt作图. 前提是先导入第三方库吧 import pandas as pd import matplotlib.pyplot as plt import numpy as np 然后以下这两句用于正常显示中文标签什么的. plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签

  • Python Pandas工具绘制数据图使用教程

    目录 背景介绍 折线图 条形图 水平条形图 堆积图 散点图 饼图 蜂巢图 箱线图 绘制子图 背景介绍 Pandas的DataFrame和Series在Matplotlib基础上封装了一个简易的绘图函数,使得数据处理过程中方便可视化查看结果. 折线图 import pandas as pd import numpy as np import matplotlib.pyplot as plt data=np.random.randn(5,2)*10 df=pd.DataFrame(np.abs(da

  • 在Linux下使用Python的matplotlib绘制数据图的教程

    如果你想要在Linxu中获得一个高效.自动化.高质量的科学画图的解决方案,应该考虑尝试下matplotlib库.Matplotlib是基于python的开源科学测绘包,基于python软件基金会许可证发布.大量的文档和例子.集成了Python和Numpy科学计算包.以及自动化能力,是作为Linux环境中进行科学画图的可靠选择的几个原因.这个教程将提供几个用matplotlib画图的例子. 特性 支持众多的图表类型,如:bar,box,contour,histogram,scatter,line

  • Python利用matplotlib绘制折线图的新手教程

    前言 matplotlib是Python中的一个第三方库.主要用于开发2D图表,以渐进式.交互式的方式实现数据可视化,可以更直观的呈现数据,使数据更具说服力. 一.安装matplotlib pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple 二.matplotlib图像简介 matplotlib的图像分为三层,容器层.辅助显示层和图像层. 1. 容器层主要由Canvas.Figure.Axes组成. Canvas位

  • python 用matplotlib绘制折线图详情

    目录 1. 折线图概述 1.1什么是折线图? 1.2折线图使用场景 1.3绘制折线图步骤 1.4案例展示 2. 折线2D属性 2.1linestyle:折线样式 2.2color:折线颜色 2.3marker:坐标值标记 2.4fillstyle:标记填充方法 2.5linewidth(lw): 直线宽度 3. 坐标管理 3.1坐标轴名字设置 3.2坐标轴刻度设置 3.3坐标轴位置设置 3.4指定坐标值标注 4. 多条折线展示图 5. 图列管理 复习回顾: 众所周知,matplotlib 是一款

  • Python使用Matplotlib绘制甘特图的实践

    目录 1.引言 2.举个栗子 3.数据预处理 4.绘制甘特图 5.添加颜色 6.添加透明度 7.再优化 8. 总结 1.引言 甘特图已经拥有 100 多年的历史,这种可视化图表对项目管理非常有用. Henry Gantt 为了分析已经完成的项目创建了甘特图,他最初设计这个可视化工具主要用来衡量员工的工作效率并从中识别表现不佳的员工.经过多年的发展,甘特图已经发展成项目规划和跟踪的必备工具. 本文主要介绍如何使用Matplotlib来绘制甘特图,并不断优化我们的可视化效果. 闲话少说,我们直接开始

  • Python利用Bokeh进行数据可视化的教程分享

    目录 介绍 代码1.散点标记 代码2.单行 代码3.条形图 代码4.箱线图 代码5.直方图 代码6.散点图 介绍 Bokeh是 Python 中的数据可视化库,提供高性能的交互式图表和绘图.Bokeh 输出可以在笔记本.html 和服务器等各种媒体中获得.可以在 Django 和烧瓶应用程序中嵌入散景图. Bokeh 为用户提供了两个可视化界面: bokeh.models:为应用程序开发人员提供高度灵活性的低级接口. bokeh.plotting:用于创建视觉字形的高级界面. 要安装 bokeh

  • Python使用plotly绘制数据图表的方法

    导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示. Plotly简介 Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Pyt

  • python使用matplotlib绘制雷达图

    本文实例为大家分享了python使用matplotlib绘制雷达图的具体代码,供大家参考,具体内容如下 示例代码: # encoding: utf-8 import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['KaiTi'] # 显示中文 labels = np.array([u'总场次', u'吃鸡数', u'前十数',u'总击杀']) #

  • python处理excel绘制雷达图

    本文实例为大家分享了python处理excel绘制雷达图的具体代码,供大家参考,具体内容如下 python处理excel制成雷达图,利用工具plotly在线生成,事先要安装好xlrd组件 代码: import xlrd //事先要下载好xlrd组件 import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from plotly.graph_objs import * tools.set_

  • Python调用Matplotlib绘制振动图、箱型图和提琴图

    目录 Matplotlib介绍 振动图 箱型图 提琴图 Matplotlib介绍 Matplotlib 是一款用于数据可视化的 Python 软件包,支持跨平台运行,它能够根据 NumPy  ndarray 数组来绘制 2D 图像,它使用简单.代码清晰易懂,深受广大技术爱好者喜爱. NumPy 是 Python 科学计算的软件包,ndarray 则是 NumPy 提供的一种数组结构. Matplotlib 由 John D. Hunter 在 2002 年开始编写, 2003 年 Matplot

随机推荐