tensorflow中tf.reduce_mean函数的使用

tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值。

reduce_mean(input_tensor,
        axis=None,
        keep_dims=False,
        name=None,
        reduction_indices=None)
  • 第一个参数input_tensor: 输入的待降维的tensor;
  • 第二个参数axis: 指定的轴,如果不指定,则计算所有元素的均值;
  • 第三个参数keep_dims:是否降维度,设置为True,输出的结果保持输入tensor的形状,设置为False,输出结果会降低维度;
  • 第四个参数name: 操作的名称;
  • 第五个参数 reduction_indices:在以前版本中用来指定轴,已弃用;

以一个维度是2,形状是[2,3]的tensor举例:

import tensorflow as tf

x = [[1,2,3],
   [1,2,3]]

xx = tf.cast(x,tf.float32)

mean_all = tf.reduce_mean(xx, keep_dims=False)
mean_0 = tf.reduce_mean(xx, axis=0, keep_dims=False)
mean_1 = tf.reduce_mean(xx, axis=1, keep_dims=False)

with tf.Session() as sess:
  m_a,m_0,m_1 = sess.run([mean_all, mean_0, mean_1])

print m_a  # output: 2.0
print m_0  # output: [ 1. 2. 3.]
print m_1  #output: [ 2. 2.]

如果设置保持原来的张量的维度,keep_dims=True ,结果:

print m_a  # output: [[ 2.]]
print m_0  # output: [[ 1. 2. 3.]]
print m_1  #output: [[ 2.], [ 2.]]

类似函数还有:

  • tf.reduce_sum :计算tensor指定轴方向上的所有元素的累加和;
  • tf.reduce_max  :  计算tensor指定轴方向上的各个元素的最大值;
  • tf.reduce_all :  计算tensor指定轴方向上的各个元素的逻辑和(and运算);
  • tf.reduce_any:  计算tensor指定轴方向上的各个元素的逻辑或(or运算);

到此这篇关于tensorflow中tf.reduce_mean函数的使用的文章就介绍到这了,更多相关tensorflow tf.reduce_mean内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • tensorflow之变量初始化(tf.Variable)使用详解

    默认本系列的的读者已经初步熟悉tensorflow. 我们通过tf.Variable构造一个variable添加进图中,Variable()构造函数需要变量的初始值(是一个任意类型.任意形状的tensor),这个初始值指定variable的类型和形状.通过Variable()构造函数后,此variable的类型和形状固定不能修改了,但值可以用assign方法修改. 如果想修改variable的shape,可以使用一个assign op,令validate_shape=False. 通过Varia

  • Tensorflow中tf.ConfigProto()的用法详解

    参考Tensorflow Machine Leanrning Cookbook tf.ConfigProto()主要的作用是配置tf.Session的运算方式,比如gpu运算或者cpu运算 具体代码如下: import tensorflow as tf session_config = tf.ConfigProto( log_device_placement=True, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0,

  • TensorFlow tf.nn.max_pool实现池化操作方式

    max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow] tf.nn.conv2d实现卷积的方式 tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape 第

  • 关于Tensorflow中的tf.train.batch函数的使用

    这两天一直在看tensorflow中的读取数据的队列,说实话,真的是很难懂.也可能我之前没这方面的经验吧,最早我都使用的theano,什么都是自己写.经过这两天的文档以及相关资料,并且请教了国内的师弟.今天算是有点小感受了.简单的说,就是计算图是从一个管道中读取数据的,录入管道是用的现成的方法,读取也是.为了保证多线程的时候从一个管道读取数据不会乱吧,所以这种时候 读取的时候需要线程管理的相关操作.今天我实验室了一个简单的操作,就是给一个有序的数据,看看读出来是不是有序的,结果发现是有序的,所以

  • TensorFlow tf.nn.conv2d实现卷积的方式

    实验环境:tensorflow版本1.2.0,python2.7 介绍 惯例先展示函数: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方法有关的一共五个参数: input: 指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[

  • tensorflow中tf.slice和tf.gather切片函数的使用

    tf.slice(input_, begin, size, name=None):按照指定的下标范围抽取连续区域的子集 tf.gather(params, indices, validate_indices=None, name=None):按照指定的下标集合从axis=0中抽取子集,适合抽取不连续区域的子集 输出: input = [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]] tf.slice(

  • Tensorflow 利用tf.contrib.learn建立输入函数的方法

    在实际的业务中,可能会遇到很大量的特征,这些特征良莠不齐,层次不一,可能有缺失,可能有噪声,可能规模不一致,可能类型不一样,等等问题都需要我们在建模之前,先预处理特征或者叫清洗特征.那么这清洗特征的过程可能涉及多个步骤可能比较复杂,为了代码的简洁,我们可以将所有的预处理过程封装成一个函数,然后直接往模型中传入这个函数就可以啦~~~ 接下来我们看看究竟如何做呢? 1. 如何使用input_fn自定义输入管道 当使用tf.contrib.learn来训练一个神经网络时,可以将特征,标签数据直接输入到

  • TensorFlow入门使用 tf.train.Saver()保存模型

    关于模型保存的一点心得 saver = tf.train.Saver(max_to_keep=3) 在定义 saver 的时候一般会定义最多保存模型的数量,一般来说,如果模型本身很大,我们需要考虑到硬盘大小.如果你需要在当前训练好的模型的基础上进行 fine-tune,那么尽可能多的保存模型,后继 fine-tune 不一定从最好的 ckpt 进行,因为有可能一下子就过拟合了.但是如果保存太多,硬盘也有压力呀.如果只想保留最好的模型,方法就是每次迭代到一定步数就在验证集上计算一次 accurac

  • 浅谈tensorflow 中tf.concat()的使用

    concat()是将tensor沿着指定维度连接起来.其中tensorflow1.3版中是这样定义的: concat(values,axis,name='concat') 一.对于2维来说,0表示行,1表示列 t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, 8, 9], [10, 11, 12]] with tf.Session() as sess: print(sess.run(tf.concat([t1, t2], 0) )) 结果为:[[1, 2, 3], [4

  • tensorflow tf.train.batch之数据批量读取方式

    在进行大量数据训练神经网络的时候,可能需要批量读取数据.于是参考了这篇文章的代码,结果发现数据一直批量循环输出,不会在数据的末尾自动停止. 然后发现这篇博文说slice_input_producer()这个函数有一个形参num_epochs,通过设置它的值就可以控制全部数据循环输出几次. 于是我设置之后出现以下的报错: tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninit

随机推荐