基于Python中random.sample()的替代方案
python中random.sample()方法可以随机地从指定列表中提取出N个不同的元素,但在实践中发现,当N的值比较大的时候,该方法执行速度很慢,如:
numpy random模块中的choice方法可以有效提升随机提取的效率:
需要注意的是,需要置replace为False,即抽取的元素不能重复,默认为True。
补充知识:Python: random模块的随即取样函数:choice(),choices(),sample()
choice(seq): 从seq序列中(可以是列表,元组,字符串)随机取一个元素返回
choices(population, weights=None, *, cum_weights=None, k=1):
从population中进行K次随机选取,每次选取一个元素(注意会出现同一个元素多次被选中的情况),weights是相对权重值,population中有几个元素就要有相对应的weights值,cum_weights是累加权重值,例如,相对权重〔10, 5, 30,5〕相当于累积权重〔10, 15, 45,50〕。
在内部,在进行选择之前,相对权重被转换为累积权重,因此提供累积权重节省了工作。返回一个列表。
sample(population, k)从population中取样,一次取k个,返回一个k长的列表。
可以像这样使用sample(range(10000000), k=60)
以上这篇基于Python中random.sample()的替代方案就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Python随机函数random()使用方法小结
1. random.random() random.random()方法返回一个随机数,其在0至1的范围之内,以下是其具体用法: import random print ("随机数: ", random.random()) 输出结果:0.22867521257116 2. random.uniform() random.uniform()是在指定范围内生成随机数,其有两个参数,一个是范围上限,一个是范围下线,具体用法如下: import random print (random.uni
-
Python内置random模块生成随机数的方法
本文我们详细地介绍下两个模块关于生成随机序列的其他使用方法. 随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等.Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入random模块. import random 下面介绍下Python内置的random模块的几种生成随机数的方法. 1.random.random()随机生成 0 到 1 之间的浮点数[0.0, 1.0).注意的是返回的随机数可能会是 0 但
-
python随机模块random的22种函数(小结)
前言 随机数可以用于数学,游戏,安全等领域中,还经常被嵌入到算法中,用以提高算法效率,并提高程序的安全性.平时数据分析各种分布的数据构造也会用到. random模块,用于生成伪随机数,之所以称之为伪随机数,是因为真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率随机产生的,其结果是不可预测的,是不可见的.而计算机中的随机函数是按照一定算法模拟产生的,对于正常随机而言,会出现某个事情出现多次的情况. 但是伪随机在事情触发前设定好,就是这个十个事件各发生一次
-
你真的了解Python的random模块吗?
random模块 用于生成伪随机数 源码位置: Lib/random.py(看看就好,千万别随便修改) 真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率随机产生的,其结果是不可预测的,是不可见的.而计算机中的随机函数是按照一定算法模拟产生的,其结果是确定的,是可见的.我们可以这样认为这个可预见的结果其出现的概率是100%.所以用计算机随机函数所产生的"随机数"并不随机,是伪随机数. 计算机的伪随机数是由随机种子根据一定的计算方法计算出来的数值.所以,只要
-
基于Python中random.sample()的替代方案
python中random.sample()方法可以随机地从指定列表中提取出N个不同的元素,但在实践中发现,当N的值比较大的时候,该方法执行速度很慢,如: numpy random模块中的choice方法可以有效提升随机提取的效率: 需要注意的是,需要置replace为False,即抽取的元素不能重复,默认为True. 补充知识:Python: random模块的随即取样函数:choice(),choices(),sample() choice(seq): 从seq序列中(可以是列表,元组,字符
-
Python中Random和Math模块学习笔记
由于最近经常使用到Python中random,math和time``datetime模块, 所以决定花时间系统的学习一下 1. math模块 math中的函数不可以用于太过复杂的数的运算, 如果需要复杂数的运行最好使用cmath模块中同名函数, 如果想要更加高级的数学功能,可以考虑选择标准库之外的numpy和scipy模块,它们不但支持数组和矩阵运算,还有丰富的数学和物理方程可供使用 1.1. 数学常量 math.pi 这个数学常量等于 3.141592... math.e 这个数学常量 e =
-
python 中random模块的常用方法总结
python 中random的常用方法总结 一.random常用模块 1.random.random() 随机生成一个小数 print(random.random()) # 输出 0.6060562117996784 2.random.randint(m,n) 随机生成一个m到n的整数(包括n) print(random.randint(1, 5)) #输出 5 3. random.randrange(m,n) 随机生成m到n中的一个数,包括 m 但是不包括 n print(random.ran
-
Python中random模块常用方法的使用教程
前言 Python 的random模块包含许多随机数生成器. random是Python标准库之一,直接导入即可使用.本文介绍random中常用方法的用法. 一.生成随机的整数 # coding=utf-8 import random print(random.randint(1, 5)) print(random.randrange(0, 51, 5)) 运行结果: 3 40 randint(start, end)会返回一个start到end之间的整数,这里是左闭右闭区间.也就是说可能会返回e
-
python中random模块详解
Python中的random模块用于生成随机数,它提供了很多函数.常用函数总结如下: 1. random.random() 用于生成一个0到1的随机浮点数: 0 <= n < 1.0 2. random.seed(n) 用于设定种子值,其中的n可以是任意数字.random.random() 生成随机数时,每一次生成的数都是随机的.但是,使用 random.seed(n) 设定好种子之后,在先调用seed(n)时,使用 random() 生成的随机数将会是同一个. 3. random.unifo
-
python中random随机函数详解
目录 一.random基础 二.实数分布 2.1 对称分布 2.2 指数分布 2.3 Beta 分布 2.4 Gamma 分布 2.5 高斯分布 2.6 对数正态分布 2.7 正态分布 2.8 冯·米塞斯分布 2.9 帕累托分布 2.10 威布尔分布 总结 加载相关库 import random import seaborn as sns import matplotlib.pyplot as plt # 解决中文不显示的问题 from pylab import mpl mpl.rcParams
-
Python中random函数的用法整理大全
首先我们需要导入random模块 1. random.random(): 返回随机生成的一个浮点数,范围在[0,1)之间 import random print(random.random()) 2. random.uniform(a, b): 返回随机生成的一个浮点数,范围在[a, b)之间 import random print(random.uniform(1,5)) 3. random.randint(a,b):生成指定范围内的整数 import random print(random
-
基于python中的TCP及UDP(详解)
python中是通过套接字即socket来实现UDP及TCP通信的.有两种套接字面向连接的及无连接的,也就是TCP套接字及UDP套接字. TCP通信模型 创建TCP服务器 伪代码: ss = socket() # 创建服务器套接字 ss.bind() # 套接字与地址绑定 ss.listen() # 监听连接 inf_loop: # 服务器无限循环 cs = ss.accept() # 接受客户端连接 comm_loop: # 通信循环 cs.recv()/cs.send() # 对话(接收/发
-
基于python中staticmethod和classmethod的区别(详解)
例子 class A(object): def foo(self,x): print "executing foo(%s,%s)"%(self,x) @classmethod def class_foo(cls,x): print "executing class_foo(%s,%s)"%(cls,x) @staticmethod def static_foo(x): print "executing static_foo(%s)"%x a=A(
-
Python中random模块用法实例分析
本文实例讲述了Python中random模块用法.分享给大家供大家参考.具体如下: import random x = random.randint(1,4); y = random.choice(['appale','banana','cherry','durian']); print(x,y); 运行结果如下: (2, 'cherry') 不管学哪个语言,我总喜欢弄个随机数玩玩.农历十一月初六,Let's Python!!! l=[ ] while True: name=input("请输入
随机推荐
- python中requests使用代理proxies方法介绍
- Erlang中执行linux命令的两种方法
- iOS中最全的各种定时器使用教程
- Java中Object.equals和String.equals的区别详解
- android开发教程之文本框加滚动条scrollview
- c#判断操作系统位数的示例分享
- C# 如何判断两个文件内容是否相同的方法
- mysql 登录时闪退的问题解决方法
- eval的两组性能测试数据
- 通过继承IHttpHandle实现JS插件的组织与管理
- SQLServer恢复表级数据详解
- sql自动增长标识导致导入数据问题的解决方法
- php读取csv文件后,uft8 bom导致在页面上显示出现问题的解决方法
- android检测网络连接状态示例讲解
- Android二级缓存加载图片实现照片墙功能
- C语言中的各种文件读写方法小结
- Android中修改TabLayout底部导航条Indicator长短的方法
- SpringMVC的Body参数拦截的问题
- Java设置Access-Control-Allow-Origin允许多域名访问的实现方法
- JavaScript Math对象和调试程序的方法分析