5 分钟读懂Python 中的 Hook 钩子函数

1. 什么是Hook

经常会听到钩子函数(hook function)这个概念,最近在看目标检测开源框架mmdetection,里面也出现大量Hook的编程方式,那到底什么是hook?hook的作用是什么?

  • what is hook ?钩子hook,顾名思义,可以理解是一个挂钩,作用是有需要的时候挂一个东西上去。具体的解释是:钩子函数是把我们自己实现的hook函数在某一时刻挂接到目标挂载点上。
  • hook函数的作用 举个例子,hook的概念在windows桌面软件开发很常见,特别是各种事件触发的机制; 比如C++的MFC程序中,要监听鼠标左键按下的时间,MFC提供了一个onLeftKeyDown的钩子函数。很显然,MFC框架并没有为我们实现onLeftKeyDown具体的操作,只是为我们提供一个钩子,当我们需要处理的时候,只要去重写这个函数,把我们需要操作挂载在这个钩子里,如果我们不挂载,MFC事件触发机制中执行的就是空的操作。

从上面可知

  • hook函数是程序中预定义好的函数,这个函数处于原有程序流程当中(暴露一个钩子出来)
  • 我们需要再在有流程中钩子定义的函数块中实现某个具体的细节,需要把我们的实现,挂接或者注册(register)到钩子里,使得hook函数对目标可用
  • hook 是一种编程机制,和具体的语言没有直接的关系
  • 如果从设计模式上看,hook模式是模板方法的扩展
  • 钩子只有注册的时候,才会使用,所以原有程序的流程中,没有注册或挂载时,执行的是空(即没有执行任何操作)

本文用python来解释hook的实现方式,并展示在开源项目中hook的应用案例。hook函数和我们常听到另外一个名称:回调函数(callback function)功能是类似的,可以按照同种模式来理解。

2. hook实现例子

据我所知,hook函数最常使用在某种流程处理当中。这个流程往往有很多步骤。hook函数常常挂载在这些步骤中,为增加额外的一些操作,提供灵活性。

下面举一个简单的例子,这个例子的目的是实现一个通用往队列中插入内容的功能。流程步骤有2个

需要再插入队列前,对数据进行筛选 input_filter_fn

插入队列 insert_queue

class ContentStash(object):
  """
  content stash for online operation
  pipeline is
  1. input_filter: filter some contents, no use to user
  2. insert_queue(redis or other broker): insert useful content to queue
  """

  def __init__(self):
    self.input_filter_fn = None
    self.broker = []

  def register_input_filter_hook(self, input_filter_fn):
    """
    register input filter function, parameter is content dict
    Args:
      input_filter_fn: input filter function
    Returns:
    """
    self.input_filter_fn = input_filter_fn

  def insert_queue(self, content):
    """
    insert content to queue
    Args:
      content: dict
    Returns:
    """
    self.broker.append(content)

  def input_pipeline(self, content, use=False):
    """
    pipeline of input for content stash
    Args:
      use: is use, defaul False
      content: dict
    Returns:
    """
    if not use:
      return

    # input filter
    if self.input_filter_fn:
      _filter = self.input_filter_fn(content)

    # insert to queue
    if not _filter:
      self.insert_queue(content)

# test
## 实现一个你所需要的钩子实现:比如如果content 包含time就过滤掉,否则插入队列
def input_filter_hook(content):
  """
  test input filter hook
  Args:
    content: dict
  Returns: None or content
  """
  if content.get('time') is None:
    return
  else:
    return content

# 原有程序
content = {'filename': 'test.jpg', 'b64_file': "#test", 'data': {"result": "cat", "probility": 0.9}}
content_stash = ContentStash('audit', work_dir='')

# 挂上钩子函数, 可以有各种不同钩子函数的实现,但是要主要函数输入输出必须保持原有程序中一致,比如这里是content
content_stash.register_input_filter_hook(input_filter_hook)

# 执行流程
content_stash.input_pipeline(content)

3. hook在开源框架中的应用

3.1 keras

在深度学习训练流程中,hook函数体现的淋漓尽致。

一个训练过程(不包括数据准备),会轮询多次训练集,每次称为一个epoch,每个epoch又分为多个batch来训练。流程先后拆解成:

  • 开始训练
  • 训练一个epoch前
  • 训练一个batch前
  • 训练一个batch后
  • 训练一个epoch后
  • 评估验证集
  • 结束训练

这些步骤是穿插在训练一个batch数据的过程中,这些可以理解成是钩子函数,我们可能需要在这些钩子函数中实现一些定制化的东西,比如在训练一个epoch后我们要保存下训练的模型,在结束训练时用最好的模型执行下测试集的效果等等。

keras中是通过各种回调函数来实现钩子hook功能的。这里放一个callback的父类,定制时只要继承这个父类,实现你过关注的钩子就可以了。

@keras_export('keras.callbacks.Callback')
class Callback(object):
 """Abstract base class used to build new callbacks.
 Attributes:
   params: Dict. Training parameters
     (eg. verbosity, batch size, number of epochs...).
   model: Instance of `keras.models.Model`.
     Reference of the model being trained.
 The `logs` dictionary that callback methods
 take as argument will contain keys for quantities relevant to
 the current batch or epoch (see method-specific docstrings).
 """

 def __init__(self):
  self.validation_data = None # pylint: disable=g-missing-from-attributes
  self.model = None
  # Whether this Callback should only run on the chief worker in a
  # Multi-Worker setting.
  # TODO(omalleyt): Make this attr public once solution is stable.
  self._chief_worker_only = None
  self._supports_tf_logs = False

 def set_params(self, params):
  self.params = params

 def set_model(self, model):
  self.model = model

 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_batch_begin(self, batch, logs=None):
  """A backwards compatibility alias for `on_train_batch_begin`."""

 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_batch_end(self, batch, logs=None):
  """A backwards compatibility alias for `on_train_batch_end`."""

 @doc_controls.for_subclass_implementers
 def on_epoch_begin(self, epoch, logs=None):
  """Called at the start of an epoch.
  Subclasses should override for any actions to run. This function should only
  be called during TRAIN mode.
  Arguments:
    epoch: Integer, index of epoch.
    logs: Dict. Currently no data is passed to this argument for this method
     but that may change in the future.
  """

 @doc_controls.for_subclass_implementers
 def on_epoch_end(self, epoch, logs=None):
  """Called at the end of an epoch.
  Subclasses should override for any actions to run. This function should only
  be called during TRAIN mode.
  Arguments:
    epoch: Integer, index of epoch.
    logs: Dict, metric results for this training epoch, and for the
     validation epoch if validation is performed. Validation result keys
     are prefixed with `val_`.
  """

 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_train_batch_begin(self, batch, logs=None):
  """Called at the beginning of a training batch in `fit` methods.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict, contains the return value of `model.train_step`. Typically,
     the values of the `Model`'s metrics are returned. Example:
     `{'loss': 0.2, 'accuracy': 0.7}`.
  """
  # For backwards compatibility.
  self.on_batch_begin(batch, logs=logs)

 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_train_batch_end(self, batch, logs=None):
  """Called at the end of a training batch in `fit` methods.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict. Aggregated metric results up until this batch.
  """
  # For backwards compatibility.
  self.on_batch_end(batch, logs=logs)

 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_test_batch_begin(self, batch, logs=None):
  """Called at the beginning of a batch in `evaluate` methods.
  Also called at the beginning of a validation batch in the `fit`
  methods, if validation data is provided.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict, contains the return value of `model.test_step`. Typically,
     the values of the `Model`'s metrics are returned. Example:
     `{'loss': 0.2, 'accuracy': 0.7}`.
  """

 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_test_batch_end(self, batch, logs=None):
  """Called at the end of a batch in `evaluate` methods.
  Also called at the end of a validation batch in the `fit`
  methods, if validation data is provided.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict. Aggregated metric results up until this batch.
  """

 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_predict_batch_begin(self, batch, logs=None):
  """Called at the beginning of a batch in `predict` methods.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict, contains the return value of `model.predict_step`,
     it typically returns a dict with a key 'outputs' containing
     the model's outputs.
  """

 @doc_controls.for_subclass_implementers
 @generic_utils.default
 def on_predict_batch_end(self, batch, logs=None):
  """Called at the end of a batch in `predict` methods.
  Subclasses should override for any actions to run.
  Arguments:
    batch: Integer, index of batch within the current epoch.
    logs: Dict. Aggregated metric results up until this batch.
  """

 @doc_controls.for_subclass_implementers
 def on_train_begin(self, logs=None):
  """Called at the beginning of training.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently no data is passed to this argument for this method
     but that may change in the future.
  """

 @doc_controls.for_subclass_implementers
 def on_train_end(self, logs=None):
  """Called at the end of training.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently the output of the last call to `on_epoch_end()`
     is passed to this argument for this method but that may change in
     the future.
  """

 @doc_controls.for_subclass_implementers
 def on_test_begin(self, logs=None):
  """Called at the beginning of evaluation or validation.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently no data is passed to this argument for this method
     but that may change in the future.
  """

 @doc_controls.for_subclass_implementers
 def on_test_end(self, logs=None):
  """Called at the end of evaluation or validation.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently the output of the last call to
     `on_test_batch_end()` is passed to this argument for this method
     but that may change in the future.
  """

 @doc_controls.for_subclass_implementers
 def on_predict_begin(self, logs=None):
  """Called at the beginning of prediction.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently no data is passed to this argument for this method
     but that may change in the future.
  """

 @doc_controls.for_subclass_implementers
 def on_predict_end(self, logs=None):
  """Called at the end of prediction.
  Subclasses should override for any actions to run.
  Arguments:
    logs: Dict. Currently no data is passed to this argument for this method
     but that may change in the future.
  """

 def _implements_train_batch_hooks(self):
  """Determines if this Callback should be called for each train batch."""
  return (not generic_utils.is_default(self.on_batch_begin) or
      not generic_utils.is_default(self.on_batch_end) or
      not generic_utils.is_default(self.on_train_batch_begin) or
      not generic_utils.is_default(self.on_train_batch_end))

这些钩子的原始程序是在模型训练流程中的

keras源码位置: tensorflow\python\keras\engine\training.py

部分摘录如下(## I am hook):

# Container that configures and calls `tf.keras.Callback`s.
   if not isinstance(callbacks, callbacks_module.CallbackList):
    callbacks = callbacks_module.CallbackList(
      callbacks,
      add_history=True,
      add_progbar=verbose != 0,
      model=self,
      verbose=verbose,
      epochs=epochs,
      steps=data_handler.inferred_steps)

   ## I am hook
   callbacks.on_train_begin()
   training_logs = None
   # Handle fault-tolerance for multi-worker.
   # TODO(omalleyt): Fix the ordering issues that mean this has to
   # happen after `callbacks.on_train_begin`.
   data_handler._initial_epoch = ( # pylint: disable=protected-access
     self._maybe_load_initial_epoch_from_ckpt(initial_epoch))
   for epoch, iterator in data_handler.enumerate_epochs():
    self.reset_metrics()
    callbacks.on_epoch_begin(epoch)
    with data_handler.catch_stop_iteration():
     for step in data_handler.steps():
      with trace.Trace(
        'TraceContext',
        graph_type='train',
        epoch_num=epoch,
        step_num=step,
        batch_size=batch_size):
       ## I am hook
       callbacks.on_train_batch_begin(step)
       tmp_logs = train_function(iterator)
       if data_handler.should_sync:
        context.async_wait()
       logs = tmp_logs # No error, now safe to assign to logs.
       end_step = step + data_handler.step_increment
       callbacks.on_train_batch_end(end_step, logs)
    epoch_logs = copy.copy(logs)

    # Run validation.

    ## I am hook
    callbacks.on_epoch_end(epoch, epoch_logs)

3.2 mmdetection

mmdetection是一个目标检测的开源框架,集成了许多不同的目标检测深度学习算法(pytorch版),如faster-rcnn, fpn, retianet等。里面也大量使用了hook,暴露给应用实现流程中具体部分。

详见https://github.com/open-mmlab/mmdetection

这里看一个训练的调用例子(摘录)https://github.com/open-mmlab/mmdetection/blob/5d592154cca589c5113e8aadc8798bbc73630d98/mmdet/apis/train.py

def train_detector(model,
          dataset,
          cfg,
          distributed=False,
          validate=False,
          timestamp=None,
          meta=None):
  logger = get_root_logger(cfg.log_level)

  # prepare data loaders

  # put model on gpus

  # build runner
  optimizer = build_optimizer(model, cfg.optimizer)
  runner = EpochBasedRunner(
    model,
    optimizer=optimizer,
    work_dir=cfg.work_dir,
    logger=logger,
    meta=meta)
  # an ugly workaround to make .log and .log.json filenames the same
  runner.timestamp = timestamp

  # fp16 setting
  # register hooks
  runner.register_training_hooks(cfg.lr_config, optimizer_config,
                  cfg.checkpoint_config, cfg.log_config,
                  cfg.get('momentum_config', None))
  if distributed:
    runner.register_hook(DistSamplerSeedHook())

  # register eval hooks
  if validate:
    # Support batch_size > 1 in validation
    eval_cfg = cfg.get('evaluation', {})
    eval_hook = DistEvalHook if distributed else EvalHook
    runner.register_hook(eval_hook(val_dataloader, **eval_cfg))

  # user-defined hooks
  if cfg.get('custom_hooks', None):
    custom_hooks = cfg.custom_hooks
    assert isinstance(custom_hooks, list), \
      f'custom_hooks expect list type, but got {type(custom_hooks)}'
    for hook_cfg in cfg.custom_hooks:
      assert isinstance(hook_cfg, dict), \
        'Each item in custom_hooks expects dict type, but got ' \
        f'{type(hook_cfg)}'
      hook_cfg = hook_cfg.copy()
      priority = hook_cfg.pop('priority', 'NORMAL')
      hook = build_from_cfg(hook_cfg, HOOKS)
      runner.register_hook(hook, priority=priority)

4. 总结

本文介绍了hook的概念和应用,并给出了python的实现细则。希望对比有帮助。总结如下:

  • hook函数是流程中预定义好的一个步骤,没有实现
  • 挂载或者注册时, 流程执行就会执行这个钩子函数
  • 回调函数和hook函数功能上是一致的
  • hook设计方式带来灵活性,如果流程中有一个步骤,你想让调用方来实现,你可以用hook函数

到此这篇关于5 分钟读懂Python 中的 Hook 钩子函数的文章就介绍到这了,更多相关Python Hook 钩子函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python利用hook技术破解https的实例代码

    相对于http协议,http是的特点就是他的安全性,http协议的通信内容用普通的嗅探器可以捕捉到,但是https协议的内容嗅探到的是加密后的内容,对我们的利用价值不是很高,所以一些大的网站----涉及到"大米"的网站,采用的都是http是协议,嘿嘿,即便这样,还是有办法能看到他的用户名和密码的,嘿嘿,本文只是用于技术学习,只是和大家交流技术,希望不要用于做违法的事情,这个例子是在firefox浏览器下登录https协议的网站,我们预先打开程序,就来了个捕获用户名和密码: 下面是源代码

  • Python中使用PyHook监听鼠标和键盘事件实例

    PyHook是一个基于Python的"钩子"库,主要用于监听当前电脑上鼠标和键盘的事件.这个库依赖于另一个Python库PyWin32,如同名字所显示的,PyWin32只能运行在Windows平台,所以PyHook也只能运行在Windows平台. 关于PyHook的使用,在它的官方主页上就有一个简单的教程,大体上来说,可以这样使用 # -*- coding: utf-8 -*- # 3import pythoncom 4import pyHook 5def onMouseEvent(e

  • 详解Python开发中如何使用Hook技巧

    什么是Hook,就是在一个已有的方法上加入一些钩子,使得在该方法执行前或执行后另在做一些额外的处理,那么Hook技巧有什么作用以及我们为什么需要使用它呢,事实上如果一个项目在设计架构时考虑的足够充分,模块抽象的足够合理,设计之初为以后的扩展预留了足够的接口,那么我们完全可以不需要Hook技巧.但恰恰架构人员在项目设计之初往往没办法想的足够的深远,使得后续在扩展时深圳面临重构的痛苦,这时Hook技巧似乎可以为我们带来一记缓兵之计,通过对旧的架构进行加钩子来满足新的扩展需求. 下面我们就来看看如果进

  • python学习之hook钩子的原理和使用

    什么是钩子 之前有转一篇关于回调函数的文章 钩子函数.注册函数.回调函数,他们的概念其实是一样的. 钩子函数,顾名思义,就是把我们自己实现的hook函数在某一时刻挂接到目标挂载点上. 1. hook函数,就是我们自己实现的函数,函数类型与挂载点匹配(返回值,参数列表) 2. 挂接,也就是hook或者叫注册(register),使得hook函数对目标可用 3. 目标挂载点,也就是挂我们hook函数的地方(我们想在这个目标点实现我们自己的功能) 先看一张图: hook的概念在windows的消息响应

  • python使用pyhook监控键盘并实现切换歌曲的功能

    自己在玩dota的时候有时候喜欢边玩游戏边听音乐,但是切换下一曲的时候必须得切出游戏,而切换音乐的热键ctrl+alt+方向键在游戏的时候没有用,好事蛋疼,今天试试使用python来实现键盘监控切换下一曲,下面贴出代码 import pythoncom, pyHook import win32gui,win32api,win32con Lcontrol_press = False Lmenu_press = False Left_press = False def OnKeyboardEvent

  • 5 分钟读懂Python 中的 Hook 钩子函数

    1. 什么是Hook 经常会听到钩子函数(hook function)这个概念,最近在看目标检测开源框架mmdetection,里面也出现大量Hook的编程方式,那到底什么是hook?hook的作用是什么? what is hook ?钩子hook,顾名思义,可以理解是一个挂钩,作用是有需要的时候挂一个东西上去.具体的解释是:钩子函数是把我们自己实现的hook函数在某一时刻挂接到目标挂载点上. hook函数的作用 举个例子,hook的概念在windows桌面软件开发很常见,特别是各种事件触发的机

  • 一文读懂python Scrapy爬虫框架

    Scrapy是什么? 先看官网上的说明,http://scrapy-chs.readthedocs.io/zh_CN/latest/intro/overview.html Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架.可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫. S

  • 带你5分钟读懂MySQL字符集设置

    一.内容概述 在MySQL的使用过程中,了解字符集.字符序的概念,以及不同设置对数据存储.比较的影响非常重要.不少同学在日常工作中遇到的"乱码"问题,很有可能就是因为对字符集与字符序的理解不到位.设置错误造成的. 本文由浅入深,分别介绍了如下内容: 字符集.字符序的基本概念及联系 MySQL支持的字符集.字符序设置级,各设置级别之间的联系 server.database.table.column级字符集.字符序的查看及设置 应该何时设置字符集.字符序 二.字符集.字符序的概念与联系 在

  • 一篇文章读懂Python赋值与拷贝

    变量与赋值 在 Python 中,一切皆为对象,对象通过「变量名」引用,「变量名」更确切的叫法是「名字」,好比我们每个人都有自己的名字一样,咱们通过名字来代指某个人,代码里面通过名字来指代某个对象. 变量赋值就是给对象绑定一个名字,赋值并不会拷贝对象.好比我们出生的时候父母就要给我们取一个名字一样,给人取个绰号并不来多出一个人来,只是多一个名字罢了. 两个对象做比较有两种方式,分别是:is 与 == ,is比较的是两个对象是否相同,通过对象的ID值可识别是否为相同对象,==比较的是两个对象的值是

  • 3分钟看懂Python后端必须知道的Django的信号机制

    概念 django自带一套信号机制来帮助我们在框架的不同位置之间传递信息.也就是说,当某一事件发生时,信号系统可以允许一个或多个发送者(senders)将通知或信号(signals)发送给一组接受者(receivers). (感觉就很像Qt的信号与槽机制) 信号系统包含以下三要素: 发送者-信号的发出方 信号-信号本身 接收者-信号的接受者 Django内置了一整套信号,下面是一些比较常用的: Django内置信号 Model signals pre_init # django的modal执行其

  • 一文读懂Python 枚举

    enum 是一组绑定到唯一常数值的符号名称,并且具备可迭代性和可比较性的特性.我们可以使用 enum 创建具有良好定义的标识符,而不是直接使用魔法字符串或整数,也便于开发工程师的代码维护. 创建枚举 我们可以使用 class 语法创建一个枚举类型,方便我们进行读写,另外,根据函数 API 的描述定义,我们可以创建一个 enum 的子类,如下: from enum import Enum class HttpStatus(Enum): OK = 200 BAD_REQUEST = 400 FORB

  • 一文读懂Python版本管理工具Pyenv使用

    pyenv简单介绍 在日常运维中, 经常遇到这样的情况: 系统自带的Python是2.x,而业务部署需要Python 3.x 环境, 此时需要在系统中安装多个Python版本,但又不能影响系统自带的Python 版本,即需要实现Python的多版本环境共存, pyenv就是这样一个Python版本管理器, 可以同时管理多个python版本共存! 简单的说,pyenv 可以根据需求使用户在系统里安装和管理多个Python 版本: - 配置当前用户的python的版本; - 配置当前shell的py

  • 一文带你搞懂Python中的文件操作

    目录 一.文件的编码 二.文件的读取 2.1 open()打开函数 2.2 mode常用的三种基础访问模式 2.3 读操作相关方法 三.文件的写入 写操作快速入门 四.文件的追加 追加写入操作快速入门 五.文件操作综合案例 一.文件的编码 计算机中有许多可用编码: UTF-8 GBK Big5 等 UTF-8是目前全球通用的编码格式 除非有特殊需求,否则,一律以UTF-8格式进行文件编码即可. 二.文件的读取 2.1 open()打开函数 注意:此时的f是open函数的文件对象,对象是Pytho

  • 一文搞懂Python中subprocess模块的使用

    目录 简介 常用方法和接口 subprocess.run()解析 subprocess.Popen()解析 Popen 对象方法 subprocess.run()案例 subprocess.call()案例 subprocess.check_call()案例 subprocess.getstatusoutput()案例 subprocess.getoutput()案例 subprocess.check_output()案例 subprocess.Popen()综合案例 简介 subprocess

  • 一文读懂ava中的Volatile关键字使用

    在本文中,我们会介绍java中的一个关键字volatile. volatile的中文意思是易挥发的,不稳定的.那么在java中使用是什么意思呢? 我们知道,在java中,每个线程都会有个自己的内存空间,我们称之为working memory.这个空间会缓存一些变量的信息,从而提升程序的性能.当执行完某个操作之后,thread会将更新后的变量更新到主缓存中,以供其他线程读写. 因为变量存在working memory和main memory两个地方,那么就有可能出现不一致的情况. 那么我们就可以使

随机推荐