如何利用Python动态展示排序算法

目录
  • 前言
  • 选择冒泡
  • 插入排序
  • 归并排序
  • 希尔排序
  • 总结

前言

经常看到这种算法可视化的图片,但往往做不到和画图的人心灵相通,所以想自己画一下,本文主要实现归并排序和希尔排序,如果想实现其他算法可参考这篇

C语言实现各种排序算法[选择,冒泡,插入,归并,希尔,快排,堆排序,计数]

选择冒泡

这两种排序方案简单到很难说是什么算法,其中选择排序通过遍历一次数组,选出其中最大(小)的值放在新数组的第一位,再从剩下的数里选出最大(小)的,放到第二位,依次类推;冒泡排序则是通过重复走访要排序的数组,比较相邻元素,如果顺序不符合要求则交换位置,直到不需要交换为止。

选择排序

  冒泡排序

二者的核心代码分别为:

#x为待排序列表,N=len(x)
#选择排序
for i in range(N):
    iMax = i
    for j in range(i, N):
        if(x[j]>x[iMax]):
            iMax = j
    x[iMax],x[i] = x[i],x[iMax]

#冒泡排序
tempN = N-1
for i in range(tempN):
    for j in range(0, tempN-i):
        if(x[j]>x[j+1]):
            x[j],x[j+1] = x[j+1],x[j]

下面给出选择排序的绘图代码,其他的所有排序算法,其实只需改变核心部分。

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation 

start,end,N = 10,100,9
x = np.random.randint(start, end, size=N)
Index = np.arange(N)
xs = []
nowIndex = []

for i in range(N):
    iMax = i
    for j in range(i, N):
        xs.append(x*1)      #存储当前顺序,用于绘图
        nowIndex.append([i,j,iMax]) #存储当前的i,j,max位置,用于绘图
        if(x[j]>x[iMax]):
            iMax = j
            xs.append(x*1)
            nowIndex.append([i,j,iMax])
    x[iMax],x[i] = x[i],x[iMax]

fig, ax = plt.subplots()
colors = np.repeat('g',N)
colors[0] = 'b'
bar = ax.bar(Index,x,color=colors)

def animate(n):
    data = xs[n]
    colors = np.repeat('gray',N)
    colors[nowIndex[n]] = 'b','g','r'
    ax.clear()
    bar = ax.bar(Index, data, color=colors)
    return bar

ani = animation.FuncAnimation(fig, animate,
    range(len(xs)), interval=500, repeat=False, blit=True)
plt.show()
ani.save("sort.gif")

插入排序

插入排序的基本思路是将数组分为前后两个部分,前面有序,后面无序。逐个扫描无序数组,将每次扫描的数插入到有序数组中,从而有序数组越来越长,无序数组越来越短,直到整个数组都是有序的。

核心代码为

for i in range(1,N):
    j = i-1
    temp = x[i]
    while(x[i]<x[j] and j>=0):
        x[j+1] = x[j]
        j -= 1
    x[j+1] = temp

由于在这段代码中,x[i]被取出放在旁边,所以其动态图中大部分时间会缺失一个值,在图中将其置于最右侧,其动态过程如图所示,蓝色表示抽出来准备插进去的那根bar

归并排序

排序算法到这里才算有点意思,归并排序是算法导论中介绍分治概念时提到的,基本思路是将数组拆分成子数组,然后令子数组有序,再令数组之间有序,从而整个数组有序。

算法步骤

设数组有 n个元素, { a 0 , a 1 , … , a n }

  1. 如果数组元素大于2,则将数组分成左数组和右数组,如果数组等于2,则将数组转成有序数组
  2. 对左数组和右数组执行1操作。
  3. 合并左数组和右数组。

可以发现,对长度为 n 的数组,需要 log 2 n 次的拆分,每个拆分层级都有 O ( n ) 的时间复杂度和 O ( n )的空间复杂度,所以其时间复杂度和空间复杂度分别为 O ( n log 2 n ) 和 O ( n ) 。

其核心算法为

def Merge(X, Y):
    nL,nR = len(X), len(Y)
    iterL,iterR = 0,0
    xNew = []
    for _ in range(nL+nR):
        if(iterL==nL): return xNew + Y[iterR:]
        if(iterR==nR): return xNew + X[iterL:]
        if(X[iterL]<Y[iterR]):
            xNew.append(X[iterL])
            iterL += 1
        else:
            xNew.append(Y[iterR])
            iterR += 1
    return xNew

def MergeSort(x):
    if len(x)==1:
        return x
    if len(x)==2:
        return x if x[0]<x[1] else [x[1],x[0]]
    nL = len(x)//2
    return Merge(MergeSort(x[:nL]),
                 MergeSort(x[nL:]))

当然这么写效率是非常低的,如果像高效还是得用指针,但我都已经用Python了,所以就不去想效率的问题,问题的关键是这种带有返回值的递归程序根本没法画图啊。。。所以还是改成指针的写法

def Merge(X, nL):
    nR = len(X)-nL
    XL,XR = X[:nL]*1,X[nL:]*1
    iterL,iterR = 0,0
    for i in range(nL+nR):
        if(iterL==nL): break
        if(iterR==nR):
            X[i:] = XL[iterL:]
            return
        if(XL[iterL]<XR[iterR]):
            X[i] = XL[iterL]
            iterL += 1
        else:
            X[i] = XR[iterR]
            iterR += 1

def MergeSort(X):
    if len(X)<2:
        return
    nL = len(X)//2
    MergeSort(X[:nL])
    MergeSort(X[nL:])
    Merge(X,nL)

这个图。。怎么说呢,因为在Merge过程中,有很多bar被掩盖掉了,所以可能只有画图的人能看懂吧。。。

希尔排序

据说是第一个突破 O ( n 2 ) 的排序算法,又称为缩小增量排序,本质上也是一种分治方案。

在归并排序中,先将长度为n的数组划分为nL和nR两部分,然后继续划分,直到每个数组的长度不大于2,再对每个不大于2的数组进行排序。这样,每个子数组内部有序而整体无序,然后将有序的数组进行回溯重组,直到重新变成长度为n的数组为止。

希尔排序反其道而行之,在将数组划分为nL和nR后,对nL和nR进行按位排序,使得nL和nR内部无序,但整体有序。然后再将数组进行细分,当数组长度变成1的时候,内部也就谈不上无序了,而所有长度为1的数组整体有序,也就是说有这些子数组所组成的数组是有序的。

算法步骤

设数组有 n 个元素, { a 0 , a 1 , … , a n }

  1. 如果数组元素大于2,则将数组分成左数组和右数组,并对左数组和右数组的元素进行一对一地排序。
  2. 对每一个数组进行细分,然后将每个子数组进行一对一排序。
def ShellSort(arr):
    n = len(arr)
    nSub = n//2
    while nSub>0:
        for i in range(nSub,n):
            temp = arr[i]
            j = i-nSub
            while j>=0 and temp<arr[j]:
                arr[j+nSub] = arr[j]
                j -= nSub
            arr[j+nSub] = temp
        nSub //= 2

总结

到此这篇关于如何利用Python动态展示排序算法的文章就介绍到这了,更多相关Python动态展示排序算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python选择排序算法的实现代码

    1.算法:对于一组关键字{K1,K2,-,Kn}, 首先从K1,K2,-,Kn中选择最小值,假如它是 Kz,则将Kz与 K1对换:然后从K2,K3,- ,Kn中选择最小值 Kz,再将Kz与K2对换.如此进行选择和调换n-2趟,第(n-1)趟,从Kn-1.Kn中选择最小值 Kz将Kz与Kn-1对换,最后剩下的就是该序列中的最大值,一个由小到大的有序序列就这样形成. 2.python 选择排序代码: 复制代码 代码如下: def selection_sort(list2):    for i in

  • python 算法 排序实现快速排序

    QUICKSORT(A, p, r)是快速排序的子程序,调用划分程序对数组进行划分,然后递归地调用QUICKSORT(A, p, r),以完成快速排序的过程.快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn).最差时间复杂度的情况为数组基本有序的时候,平均时间复杂度为数组的数值分布较为平均的时候.在平时情况下快速排序跟堆排序的时间复杂度都为O(nlgn),但是快速排序的常数项较小,所以要优于堆排序. PARTITION(A, p, r) 复制代码 代码如下: x ← A[r]

  • python冒泡排序算法的实现代码

    1.算法描述:(1)共循环 n-1 次(2)每次循环中,如果 前面的数大于后面的数,就交换(3)设置一个标签,如果上次没有交换,就说明这个是已经好了的. 2.python冒泡排序代码 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def bubble(l):    flag = True    for i in range(len(l)-1, 0, -1):        if flag:             flag = False

  • python 实现归并排序算法

    理论不多说: 复制代码 代码如下: #!/usr/bin/python import sys def merge(array, q, p, r): left_array = array[q:p+1] right_array = array[p+1:r+1] left_array_num = len(left_array) right_array_num = len(right_array) i, j , k= [0, 0, q] while i < left_array_num and j <

  • python实现的各种排序算法代码

    复制代码 代码如下: # -*- coding: utf-8 -*-# 测试各种排序算法# link:www.jb51.net# date:2013/2/2 #选择排序def select_sort(sort_array):    for i, elem in enumerate(sort_array):        for j, elem in enumerate(sort_array[i:]):            if sort_array[i] > sort_array[j + i]

  • python实现冒泡排序算法的两种方法

    什么是冒泡排序? 冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法. 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成. 这个算法的名字由来是因为越大的元素会经由交换慢慢"浮"到数列的顶端,故名冒泡排序. 以上是百度词条对冒泡排序的官方解释. 但是我要说一下我的个人理解,我觉得冒泡排序的核心思想是:每次比较两个数,如果他们顺序错误(大于或者小于),那么就把

  • Python实现的直接插入排序算法示例

    本文实例讲述了Python实现的直接插入排序算法.分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- '''直接插入的python实现 时间复杂度O(n**2) 空间复杂度O(1) 稳定 思想:先将前两个元素排序,第三个元素插入前面已排好序列, 后面的元素依次插入之前已经排好序的序列 ''' author = 'Leo Howell' L = [89,67,56,45,34,23,1] def direct_insert_sort(numbers): for i in

  • 基于python的七种经典排序算法(推荐)

    一.排序的基本概念和分类 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作.排序算法,就是如何使得记录按照要求排列的方法. 排序的稳定性: 经过某种排序后,如果两个记录序号同等,且两者在原无序记录中的先后秩序依然保持不变,则称所使用的排序方法是稳定的,反之是不稳定的. 内排序和外排序 内排序:排序过程中,待排序的所有记录全部放在内存中 外排序:排序过程中,使用到了外部存储. 通常讨论的都是内排序. 影响内排序算法性能的三个因素: 时间复杂度:即时间性能,高效

  • Python实现的数据结构与算法之快速排序详解

    本文实例讲述了Python实现的数据结构与算法之快速排序.分享给大家供大家参考.具体分析如下: 一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分).划分元素pivot.right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上:然后分别对left和right两个部分进行 递归排序. 其中

  • python 实现插入排序算法

    复制代码 代码如下: #!/usr/bin/python def insert_sort(array): for i in range(1, len(array)): key = array[i] j = i - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j-=1 array[j + 1] = key if __name__ == "__main__": array = [2, 4, 32, 64,

随机推荐