使用递归算法结合数据库解析成Java树形结构的代码解析

1、准备表结构及对应的表数据

a、表结构:

create table TB_TREE
(
CID NUMBER not null,
CNAME VARCHAR2(50),
PID NUMBER //父节点
)

b、表数据:

insert into tb_tree (CID, CNAME, PID) values (1, '中国', 0);
insert into tb_tree (CID, CNAME, PID) values (2, '北京市', 1);
insert into tb_tree (CID, CNAME, PID) values (3, '广东省', 1);
insert into tb_tree (CID, CNAME, PID) values (4, '上海市', 1);
insert into tb_tree (CID, CNAME, PID) values (5, '广州市', 3);
insert into tb_tree (CID, CNAME, PID) values (6, '深圳市', 3);
insert into tb_tree (CID, CNAME, PID) values (7, '海珠区', 5);
insert into tb_tree (CID, CNAME, PID) values (8, '天河区', 5);
insert into tb_tree (CID, CNAME, PID) values (9, '福田区', 6);
insert into tb_tree (CID, CNAME, PID) values (10, '南山区', 6);
insert into tb_tree (CID, CNAME, PID) values (11, '密云县', 2);
insert into tb_tree (CID, CNAME, PID) values (12, '浦东', 4);

2、TreeNode对象,对应tb_tree

public class TreeNode implements Serializable {
private Integer cid;
private String cname;
private Integer pid;
private List nodes = new ArrayList();
public TreeNode() {
}
//getter、setter省略
}

3、测试数据

public class TreeNodeTest {
@Test
public void loadTree() throws Exception{
System.out.println(JsonUtils.javaToJson(recursiveTree(1)));
}
/**
* 递归算法解析成树形结构
*
* @param cid
* @return
* @author jiqinlin
*/
public TreeNode recursiveTree(int cid) {
//根据cid获取节点对象(SELECT * FROM tb_tree t WHERE t.cid=?)
TreeNode node = personService.getreeNode(cid);
//查询cid下的所有子节点(SELECT * FROM tb_tree t WHERE t.pid=?)
List childTreeNodes = personService.queryTreeNode(cid);
//遍历子节点
for(TreeNode child : childTreeNodes){
TreeNode n = recursiveTree(child.getCid()); //递归
node.getNodes().add(n);
}
return node;
}
}

输出的json格式如下:

{
  "cid": 1,
  "nodes": [
    {
      "cid": 2,
      "nodes": [
        {
          "cid": 11,
          "nodes": [
          ],
          "cname": "密云县",
          "pid": 2
        }
      ],
      "cname": "北京市",
      "pid": 1
    },
    {
      "cid": 3,
      "nodes": [
        {
          "cid": 5,
          "nodes": [
            {
              "cid": 7,
              "nodes": [
              ],
              "cname": "海珠区",
              "pid": 5
            },
            {
              "cid": 8,
              "nodes": [
              ],
              "cname": "天河区",
              "pid": 5
            }
          ],
          "cname": "广州市",
          "pid": 3
        },
        {
          "cid": 6,
          "nodes": [
            {
              "cid": 9,
              "nodes": [
              ],
              "cname": "福田区",
              "pid": 6
            },
            {
              "cid": 10,
              "nodes": [
              ],
              "cname": "南山区",
              "pid": 6
            }
          ],
          "cname": "深圳市",
          "pid": 3
        }
      ],
      "cname": "广东省",
      "pid": 1
    },
    {
      "cid": 4,
      "nodes": [
        {
          "cid": 12,
          "nodes": [
          ],
          "cname": "浦东",
          "pid": 4
        }
      ],
      "cname": "上海市",
      "pid": 1
    }
  ],
  "cname": "中国",
  "pid": 0
}

总结

以上所述是小编给大家介绍的使用递归算法结合数据库解析成Java树形结构的代码解析,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • Java时间轮算法的实现代码示例

    考虑这样一个场景,现在有5000个任务,要让这5000个任务每隔5分中触发某个操作,怎么去实现这个需求.大部分人首先想到的是使用定时器,但是5000个任务,你就要用5000个定时器,一个定时器就是一个线程,你懂了吧,这种方法肯定是不行的. 针对这个场景,催生了时间轮算法,时间轮到底是什么?我一贯的风格,自行谷歌去.大发慈悲,发个时间轮介绍你们看看,看文字和图就好了,代码不要看了,那个文章里的代码运行不起来,时间轮介绍. 看好了介绍,我们就开始动手吧. 开发环境:idea + jdk1.8 + m

  • 基于java实现的ECC加密算法示例

    本文实例讲述了基于java实现的ECC加密算法.分享给大家供大家参考,具体如下: ECC ECC-Elliptic Curves Cryptography,椭圆曲线密码编码学,是目前已知的公钥体制中,对每比特所提供加密强度最高的一种体制.在软件注册保护方面起到很大的作用,一般的序列号通常由该算法产生. 当我开始整理<Java加密技术(二)>的时候,我就已经在开始研究ECC了,但是关于Java实现ECC算法的资料实在是太少了,无论是国内还是国外的 资料,无论是官方还是非官方的解释,最终只有一种答

  • Java中数字黑洞实现代码

    给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字.一直重复这样做,我们很快会停在有"数字黑洞"之称的6174,这个神奇的数字也叫Kaprekar常数. 例,我们从6767开始,将得到 7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174 7641 - 1467 = 6174 现给定任意4位正整数,请

  • java算法之二分查找法的实例详解

    java算法之二分查找法的实例详解 原理 假定查找范围为一个有序数组(如升序排列),要从中查找某一元素,如果该元素在此数组中,则返回其索引,否则返回-1.通过数组长度可取出中间位置元素的索引,将其值与目标值比较,如果中间位置元素值大于目标值,则在左部分进行查找,如果中间位置值小于目标值,则在右部分进行查找,如此循环,直到结束.二分查找算法之所以快是因为它没有遍历数组的每个元素,而仅仅是查找部分元素就能找到目标或确定其不存在,当然前提是查找范围为有序数组. Java的简单实现 package me

  • 浅谈java实现背包算法(0-1背包问题)

    0-1背包的问题 背包问题(Knapsack problem)是一种组合优化的NP完全问题.问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高.问题的名称来源于如何选择最合适的物品放置于给定背包中. 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放. 用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值.则其状态转移方程便是: f[i][v]=max{ f[i-1][v], f

  • Java简单实现约瑟夫环算法示例

    本文实例讲述了Java简单实现约瑟夫环算法.分享给大家供大家参考,具体如下: 1.算法背景: 罗马人攻占了乔塔帕特,41人藏在一个山洞中躲过了这场浩劫.这41个人中,包括历史学家josephus和他的一个朋友.剩余的39个人为了表示不向罗马人屈服,决定集体自杀.大家决定了一个自杀方案,所有这41人围城一个圆圈,由第一个人开始顺时针报数,没报数为3的人就立刻自杀,然后由下一个人重新开始报数 仍然是每报数为3的人就立刻自杀,......,知道所有人都自杀死亡为止. 约瑟夫和他的朋友并不想自杀,于是约

  • 使用递归算法结合数据库解析成Java树形结构的代码解析

    1.准备表结构及对应的表数据 a.表结构: create table TB_TREE ( CID NUMBER not null, CNAME VARCHAR2(50), PID NUMBER //父节点 ) b.表数据: insert into tb_tree (CID, CNAME, PID) values (1, '中国', 0); insert into tb_tree (CID, CNAME, PID) values (2, '北京市', 1); insert into tb_tree

  • Java Classloader机制用法代码解析

    做Java开发,对于ClassLoader的机制是必须要熟悉的基础知识,本文针对Java ClassLoader的机制做一个简要的总结.因为不同的JVM的实现不同,本文所描述的内容均只限于Hotspot Jvm. 本文将会从JDK默认的提供的ClassLoader,双亲委托模型,如何自定义ClassLoader以及Java中打破双亲委托机制的场景四个方面入手去讨论和总结一下. JDK默认ClassLoader JDK 默认提供了如下几种ClassLoader Bootstrp loader Bo

  • Java中LinkedList原理代码解析

    本文研究的主要是Java中LinkedList原理的相关内容,具体介绍如下. 一句话概括,Java中的LinkedList其实就是使用双向链表,LinkedList的基本操作就是对双向链表的操作. 上面可以清晰的看出,链表中每个元素对应一个节点,节点里面包含三部分,一个是前一个节点的引用,一个是元素内容,一个是后一个节点的引用. 向链表中添加元素的过程就是在链表尾部追加一个节点 void linkLast(E e) { final Node<E> l = last; final Node<

  • Qt QTreeWidget 树形结构实现代码

    Qt中实现树形结构可以使用QTreeWidget类,也可以使用QTreeView类,QTreeWidget继承自QTreeView类.树形效果如下图所示: 这是怎么实现的呢?还有点击节点时会有相应的事件响应. 1. 树形结构实现 QT GUI中有treeWidget部件,将该控件在Gui中布局好,假设其对象名为treeWidget. QTreeWidget类官方文档:http://qt-project.org/doc/qt-4.8/qtreewidget.html 树形结构通过QTreeWidg

  • Vue组件模板形式实现对象数组数据循环为树形结构(实例代码)

    数据结构为数组中包含对象--树形结构,用Vue组件的写法实现以下的效果: 树形列表,缩进显示层级,第5级数据加底色,数据样式显色,点击展开折叠数据.本文为用Vue实现方式,另有一篇为用knockout.js的实现方法. html代码 <div id="table-component-div"> <table-component v-for="item in data1" v-bind:list="item"></ta

  • Java时区转换实例代码解析

    一.时区的说明 地球表面按经线从东到西,被划成一个个区域,规定相邻区域的时间相差1小时.在同一区域内的东端和西端的人看到太阳升起的时间最多相差不过1小时.当人们跨过一个区域,就将自己的时钟校正1小时(向西减1小时,向东加1小时),跨过几个区域就加或减几小时 ,所以同一时刻在不同时区表示的时间是不一样的. 二.时间的表示 我们平时表示时间时通常是以一个格式化的字符串来表示一个时间,例如"2019-11-5 20:05"这个字符串表示的是2019年11月5日20点05分.但这里有一个隐含的

  • Java Iterator接口实现代码解析

    Iterator接口 源代码 package java.util; import java.util.function.Consumer; /** * An iterator over a collection. {@code Iterator} takes the place of * {@link Enumeration} in the Java Collections Framework. Iterators * differ from enumerations in two ways:

  • 使用Java方法配置Spring代码解析

    使用Java的方式配置Spring 我们现在要完全不使用Spring的xml配置,全权使用Java来配置Spring! JavaConfig是Spring的一个子项目,在Spring4之后,他成为了一个核心功能. 实体类: public class User { private String name; public String getName() { return name; } @Value("huba") //属性注入值 public void setName(String n

  • Java线程状态变换过程代码解析

    线程状态 NEW:刚创建未启动的线程 RUNNABLE:正在执行状态 BLOCKED:处于阻塞状态的线程 WAITING:正在等待另一个线程执行特定动作的线程 TIMED_WAITING:等待另一个线程执行时间到达指定时间 TERMINATED:线程退出执行 public class TestState { public static void main(String[] args) { Thread thread = new Thread(()->{ for (int i = 0; i <

  • java之TreeUtils生成一切对象树形结构案例

    项目中经常会遇到各种需要以树形结构展示的功能,比较常见的,如菜单树,分类树,部门树等等,如果为每种类型都遍历递归生成树形结构返回给前端,显得有些冗余且麻烦,并且其实逻辑都是一致的,只是遍历的对象不同而已,故其实可以通过面向接口思维,来实现这种通用工具类的实现. TreeNode用来表示每个树节点的抽象,即需要生成树的对象需要实现此接口. /** * 树节点父类,所有需要使用{@linkplain TreeUtils}工具类形成树形结构等操作的节点都需要实现该接口 * * @param <T>

随机推荐