python实现LBP方法提取图像纹理特征实现分类的步骤

题目描述

这篇博文是数字图像处理的大作业.

题目描述:给定40张不同风格的纹理图片,大小为512*512,要求将每张图片分为大小相同的9块,利用其中的5块作为训练集,剩余的4块作为测试集,构建适当的模型实现图片的分类.

图片如下图所示:

分析:由于数据集太小,所以神经网络模型并不适合此类的图像处理.就需要寻找方法提取图像的纹理信息.本文采用LBP的方法提取图像的纹理信息,然后转化成直方图作为图像的特征,然后使用多分类的方法进行分类.

环境

python2.7,jupyter notebook,anaconda

数据集的地址

实现

读取数据

Numpy包数组操作API格式化数据

def loadPicture():
  train_index = 0;
  test_index = 0;
  train_data = np.zeros( (200,171,171) );
  test_data = np.zeros( (160,171,171) );
  train_label = np.zeros( (200) );
  test_label = np.zeros( (160) );
  for i in np.arange(40):
    image = mpimg.imread('picture/'+str(i)+'.tiff');
    data = np.zeros( (513,513) );
    data[0:image.shape[0],0:image.shape[1]] = image;
    #切割后的图像位于数据的位置
    index = 0;
    #将图片分割成九块
    for row in np.arange(3):
      for col in np.arange(3):
        if index<5:
          train_data[train_index,:,:] = data[171*row:171*(row+1),171*col:171*(col+1)];
          train_label[train_index] = i;
          train_index+=1;
        else:
          test_data[test_index,:,:] = data[171*row:171*(row+1),171*col:171*(col+1)];
          test_label[test_index] = i;
          test_index+=1;
        index+=1;
  return train_data,test_data,train_label,test_label;

特征提取

LBP特征提取方法

radius = 1;
n_point = radius * 8;

def texture_detect():
  train_hist = np.zeros( (200,256) );
  test_hist = np.zeros( (160,256) );
  for i in np.arange(200):
    #使用LBP方法提取图像的纹理特征.
    lbp=skft.local_binary_pattern(train_data[i],n_point,radius,'default');
    #统计图像的直方图
    max_bins = int(lbp.max() + 1);
    #hist size:256
    train_hist[i], _ = np.histogram(lbp, normed=True, bins=max_bins, range=(0, max_bins));

  for i in np.arange(160):
    lbp = skft.local_binary_pattern(test_data[i],n_point,radius,'default');
    #统计图像的直方图
    max_bins = int(lbp.max() + 1);
    #hist size:256
    test_hist[i], _ = np.histogram(lbp, normed=True, bins=max_bins, range=(0, max_bins));

  return train_hist,test_hist;

训练分类器

SVM支持向量机分类.

import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVR
from skimage import feature as skft
train_data,test_data,train_label,test_label= loadPicture();
train_hist,test_hist = texture_detect();
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1);
OneVsRestClassifier(svr_rbf,-1).fit(train_hist, train_label).score(test_hist,test_label)

实验测试集结果的正确率为:90.6%

第一次使用python的numpy包,对其中的api是真的不熟悉,代码还可以优化.其中和matlab里的矩阵操作也有不少不同,但是关于机器学习的scikitlearn包确实很好用.

总结:结果的正确率不是很高,所以还是可以在分类器上优化,或者寻找更好的特征提取的方式.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python + OpenCV 实现LBP特征提取的示例代码

    背景 看了些许的纹理特征提取的paper,想自己实现其中部分算法,看看特征提取之后的效果是怎样 运行环境 Mac OS Python3.0 Anaconda3(集成了很多包,浏览器界面编程,清爽) 步骤 导入包 from skimage.transform import rotate from skimage.feature import local_binary_pattern from skimage import data, io,data_dir,filters, feature fro

  • python实现LBP方法提取图像纹理特征实现分类的步骤

    题目描述 这篇博文是数字图像处理的大作业. 题目描述:给定40张不同风格的纹理图片,大小为512*512,要求将每张图片分为大小相同的9块,利用其中的5块作为训练集,剩余的4块作为测试集,构建适当的模型实现图片的分类. 图片如下图所示: 分析:由于数据集太小,所以神经网络模型并不适合此类的图像处理.就需要寻找方法提取图像的纹理信息.本文采用LBP的方法提取图像的纹理信息,然后转化成直方图作为图像的特征,然后使用多分类的方法进行分类. 环境 python2.7,jupyter notebook,a

  • python 三种方法提取pdf中的图片

    有时我们需要将一份或者多份PDF文件中的图片提取出来,如果采取在线的网站实现的话又担心图片泄漏,手动操作又觉得麻烦,其实用Python也可以轻松搞定! 今天就跟大家系统分享几种Python提取 PDF 图片的方法.其实没有非常完美的方法,每种方法提取效率都不是百分之百,因此可以考虑用多种方法进行互补,主要将涉及: 基于 fitz 库和正则搜索提取图片 基于 pdf2image 库的两种方法提取图片 基于 fitz 库和正则搜索 fitz 是 pymupdf 的子模块,需要先用命令行安装 pymu

  • python提取图像的名字*.jpg到txt文本的方法

    如下所示: <span style="font-size:18px;"># -*- coding:utf-8 -*- import sys sys.path.append('E:\\Anaconda\\libs') import os #os:操作系统相关的信息模块 import random #导入随机函数 #存放原始图片地址 data_base_dir = "C:\\Users\\Administrator.MICROSO-1HCAN56\\Desktop\\

  • python多进程读图提取特征存npy

    本文实例为大家分享了python多进程读图提取特征存npy的具体代码,供大家参考,具体内容如下 import multiprocessing import os, time, random import numpy as np import cv2 import os import sys from time import ctime import tensorflow as tf image_dir = r"D:/sxl/处理图片/汉字分类/train10/" #图像文件夹路径 da

  • Python使用get_text()方法从大段html中提取文本的实例

    如下所示: <textarea rows="" cols="" name="id"><DIV style="TEXT-INDENT: 18pt; mso-char-indent-count: 2.0000" class=MsoNormal><SPAN style="FONT-FAMILY: 宋体; FONT-SIZE: 9pt; mso-spacerun: 'yes'; mso-font

  • python将处理好的图像保存到指定目录下的方法

    原始图像绝对路径的图像名存储在一个txt文件中,下面的程序实现的功能是按照txt文件的顺序,依次将图片读取然后进行处理,最后将处理之后的图像保存在指定的路径下: # Read in the image to be detected # 原始图像均保存在binaries.txt文件中,将包含绝对目录的图像名提取出来并写到txt文件的程序见上一篇博客 f = open("/home/shenruixue/image_test/binaries.txt") line = f.readline

  • python opencv人脸检测提取及保存方法

    注意这里提取到的人脸图片的保存地址要改成自己要保存的地址 opencv人脸的检测模型的路径也要更改为自己安装的opencv的人脸检测模型的路径 import cv2 save_path = 'F:\\face_photo_save\\chenym\\' cascade = cv2.CascadeClassifier("D:\\opencv249\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt_tree.xml&q

  • python 将json数据提取转化为txt的方法

    如下所示: #-*- coding: UTF-8 -*- import json import pymysql import os import sys # 数据类型 # { # "name": "score.networkQuality", # "index": true, # "view": "app/views/score/networkQuality.tmpl.html", # "file

  • Python叠加两幅栅格图像的实现方法

    目的 现有两幅栅格图像,一个是某地区道路栅格图,一个是某地区土地利用类型图,需要将道路叠加到土地利用类型图中,即叠加后,重合的像元值以道路图为准,其余的像元值仍是土地利用类型图原有的像元值. 图1 道路信息图 图2 土地利用类型图 图3 结果图 具体实现 from gdalconst import * from osgeo import gdal import osr import sys import copy #叠加两个栅格图像(一个道路栅格图,一个土地利用类型图),两幅图像重叠的像元值都是

  • python用opencv批量截取图像指定区域的方法

    代码如下 import os import cv2 for i in range(1,201): if i==169 or i==189: i = i+1 pth = "C:\\Users\\Desktop\\asd\\"+str(i)+".bmp" image = cv2.imread(pth) //从指定路径读取图像 cropImg = image[600:1200,750:1500] //获取感兴趣区域 cv2.imwrite("C:\\Users\

随机推荐