TensorFlow实现简单的CNN的方法

这里,我们将采用Tensor Flow内建函数实现简单的CNN,并用MNIST数据集进行测试

第1步:加载相应的库并创建计算图会话

import numpy as np
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
import matplotlib.pyplot as plt

#创建计算图会话
sess = tf.Session()

第2步:加载MNIST数据集,这里采用TensorFlow自带数据集,MNIST数据为28×28的图像,因此将其转化为相应二维矩阵

#数据集
data_dir = 'MNIST_data'
mnist = read_data_sets(data_dir)

train_xdata = np.array([np.reshape(x,[28,28]) for x in mnist.train.images] )
test_xdata = np.array([np.reshape(x,[28,28]) for x in mnist.test.images] )

train_labels = mnist.train.labels
test_labels = mnist.test.labels

第3步:设置模型参数

这里采用随机批量训练的方法,每训练10次对测试集进行测试,共迭代1500次,学习率采用指数下降的方式,初始学习率为0.1,每训练10次,学习率乘0.9,为了进行对比,后面会给出固定学习率为0.01的损失曲线图和准确率图

#设置模型参数

batch_size = 100 #批量训练图像张数
initial_learning_rate = 0.1 #学习率
global_step = tf.Variable(0, trainable=False) ;
learning_rate = tf.train.exponential_decay(initial_learning_rate,
                      global_step=global_step,
                      decay_steps=10,decay_rate=0.9)

evaluation_size = 500 #测试图像张数

image_width = 28 #图像的宽和高
image_height = 28

target_size = 10  #图像的目标为0~9共10个目标
num_channels = 1    #灰度图,颜色通道为1
generations = 1500  #迭代500次
evaluation_step = 10 #每训练十次进行一次测试

conv1_features = 25  #卷积层的特征个数
conv2_features = 50

max_pool_size1 = 2  #池化层大小
max_pool_size2 = 2

fully_connected_size = 100 #全连接层的神经元个数

第4步:声明占位符,注意这里的目标y_target类型为int32整型

#声明占位符

x_input_shape = [batch_size,image_width,image_height,num_channels]
x_input = tf.placeholder(tf.float32,shape=x_input_shape)
y_target = tf.placeholder(tf.int32,shape=[batch_size])

evaluation_input_shape = [evaluation_size,image_width,image_height,num_channels]
evaluation_input = tf.placeholder(tf.float32,shape=evaluation_input_shape)
evaluation_target = tf.placeholder(tf.int32,shape=[evaluation_size])

第5步:声明卷积层和全连接层的权重和偏置,这里采用2层卷积层和1层隐含全连接层

#声明卷积层的权重和偏置
#卷积层1
#采用滤波器为4X4滤波器,输入通道为1,输出通道为25
conv1_weight = tf.Variable(tf.truncated_normal([4,4,num_channels,conv1_features],stddev=0.1,dtype=tf.float32))
conv1_bias = tf.Variable(tf.truncated_normal([conv1_features],stddev=0.1,dtype=tf.float32))

#卷积层2
#采用滤波器为4X4滤波器,输入通道为25,输出通道为50
conv2_weight = tf.Variable(tf.truncated_normal([4,4,conv1_features,conv2_features],stddev=0.1,dtype=tf.float32))
conv2_bias = tf.Variable(tf.truncated_normal([conv2_features],stddev=0.1,dtype=tf.float32))

#声明全连接层权重和偏置

#卷积层过后图像的宽和高
conv_output_width = image_width // (max_pool_size1 * max_pool_size2) #//表示整除
conv_output_height = image_height // (max_pool_size1 * max_pool_size2)

#全连接层的输入大小
full1_input_size = conv_output_width * conv_output_height *conv2_features

full1_weight = tf.Variable(tf.truncated_normal([full1_input_size,fully_connected_size],stddev=0.1,dtype=tf.float32))
full1_bias = tf.Variable(tf.truncated_normal([fully_connected_size],stddev=0.1,dtype=tf.float32))

full2_weight = tf.Variable(tf.truncated_normal([fully_connected_size,target_size],stddev=0.1,dtype=tf.float32))
full2_bias = tf.Variable(tf.truncated_normal([target_size],stddev=0.1,dtype=tf.float32))

第6步:声明CNN模型,这里的两层卷积层均采用Conv-ReLU-MaxPool的结构,步长为[1,1,1,1],padding为SAME

全连接层隐层神经元为100个,输出层为目标个数10

def my_conv_net(input_data):

  #第一层:Conv-ReLU-MaxPool
  conv1 = tf.nn.conv2d(input_data,conv1_weight,strides=[1,1,1,1],padding='SAME')
  relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_bias))
  max_pool1 = tf.nn.max_pool(relu1,ksize=[1,max_pool_size1,max_pool_size1,1],strides=[1,max_pool_size1,max_pool_size1,1],padding='SAME')

  #第二层:Conv-ReLU-MaxPool
  conv2 = tf.nn.conv2d(max_pool1, conv2_weight, strides=[1, 1, 1, 1], padding='SAME')
  relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
  max_pool2 = tf.nn.max_pool(relu2, ksize=[1, max_pool_size2, max_pool_size2, 1],
                strides=[1, max_pool_size2, max_pool_size2, 1], padding='SAME')

  #全连接层
  #先将数据转化为1*N的形式
  #获取数据大小
  conv_output_shape = max_pool2.get_shape().as_list()
  #全连接层输入数据大小
  fully_input_size = conv_output_shape[1]*conv_output_shape[2]*conv_output_shape[3] #这三个shape就是图像的宽高和通道数
  full1_input_data = tf.reshape(max_pool2,[conv_output_shape[0],fully_input_size])  #转化为batch_size*fully_input_size二维矩阵
  #第一层全连接
  fully_connected1 = tf.nn.relu(tf.add(tf.matmul(full1_input_data,full1_weight),full1_bias))
  #第二层全连接输出
  model_output = tf.nn.relu(tf.add(tf.matmul(fully_connected1,full2_weight),full2_bias))#shape = [batch_size,target_size]

  return model_output

model_output = my_conv_net(x_input)
test_model_output = my_conv_net(evaluation_input)

第7步:定义损失函数,这里采用softmax函数作为损失函数

#损失函数

loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=model_output,labels=y_target))

第8步:建立测评与评估函数,这里对输出层进行softmax,再通过np.argmax找出每行最大的数所在位置,再与目标值进行比对,统计准确率

#预测与评估
prediction = tf.nn.softmax(model_output)
test_prediction = tf.nn.softmax(test_model_output)

def get_accuracy(logits,targets):
  batch_predictions = np.argmax(logits,axis=1)#返回每行最大的数所在位置
  num_correct = np.sum(np.equal(batch_predictions,targets))
  return 100*num_correct/batch_predictions.shape[0]

第9步:初始化模型变量并创建优化器

#创建优化器
opt = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_step = opt.minimize(loss)

#初始化变量
init = tf.initialize_all_variables()
sess.run(init)

第10步:随机批量训练并进行绘图

#开始训练

train_loss = []
train_acc = []
test_acc = []
Learning_rate_vec = []
for i in range(generations):
  rand_index = np.random.choice(len(train_xdata),size=batch_size)
  rand_x = train_xdata[rand_index]
  rand_x = np.expand_dims(rand_x,3)
  rand_y = train_labels[rand_index]
  Learning_rate_vec.append(sess.run(learning_rate, feed_dict={global_step: i}))
  train_dict = {x_input:rand_x,y_target:rand_y}

  sess.run(train_step,feed_dict={x_input:rand_x,y_target:rand_y,global_step:i})
  temp_train_loss = sess.run(loss,feed_dict=train_dict)
  temp_train_prediction = sess.run(prediction,feed_dict=train_dict)
  temp_train_acc = get_accuracy(temp_train_prediction,rand_y)

  #测试集
  if (i+1)%evaluation_step ==0:
    eval_index = np.random.choice(len(test_xdata),size=evaluation_size)
    eval_x = test_xdata[eval_index]
    eval_x = np.expand_dims(eval_x,3)
    eval_y = test_labels[eval_index]

    test_dict = {evaluation_input:eval_x,evaluation_target:eval_y}
    temp_test_preds = sess.run(test_prediction,feed_dict=test_dict)
    temp_test_acc = get_accuracy(temp_test_preds,eval_y)

    test_acc.append(temp_test_acc)
  train_acc.append(temp_train_acc)
  train_loss.append(temp_train_loss)

#画损失曲线
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(train_loss,'k-')
ax.set_xlabel('Generation')
ax.set_ylabel('Softmax Loss')
fig.suptitle('Softmax Loss per Generation')

#画准确度曲线
index = np.arange(start=1,stop=generations+1,step=evaluation_step)
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
ax2.plot(train_acc,'k-',label='Train Set Accuracy')
ax2.plot(index,test_acc,'r--',label='Test Set Accuracy')
ax2.set_xlabel('Generation')
ax2.set_ylabel('Accuracy')
fig2.suptitle('Train and Test Set Accuracy')

#画图
fig3 = plt.figure()
actuals = rand_y[0:6]
train_predictions = np.argmax(temp_train_prediction,axis=1)[0:6]
images = np.squeeze(rand_x[0:6])
Nrows = 2
Ncols =3

for i in range(6):
  ax3 = fig3.add_subplot(Nrows,Ncols,i+1)
  ax3.imshow(np.reshape(images[i],[28,28]),cmap='Greys_r')
  ax3.set_title('Actual: '+str(actuals[i]) +' pred: '+str(train_predictions[i]))

#画学习率
fig4 = plt.figure()
ax4 = fig4.add_subplot(111)
ax4.plot(Learning_rate_vec,'k-')
ax4.set_xlabel('step')
ax4.set_ylabel('Learning_rate')
fig4.suptitle('Learning_rate')

plt.show()

下面给出固定学习率图像和学习率随迭代次数下降的图像:

首先给出固定学习率图像:

下面是损失曲线

下面是准确率

我们可以看出,固定学习率损失函数下降速度较缓,同时其最终准确率为80%~90%之间就不再提高了

下面给出学习率随迭代次数降低的曲线:

首先给出学习率随迭代次数降低的损失曲线

然后给出相应的准确率曲线

我们可以看出其损失函数下降很快,同时准确率也可以达到90%以上

下面给出随机抓取的图像相应的识别情况:

至此我们实现了简单的CNN来实现MNIST手写图数据集的识别,如果想进一步提高其准确率,可以通过改变CNN网络参数,如通道数、全连接层神经元个数,过滤器大小,学习率,训练次数,加入dropout层等等,也可以通过增加CNN网络深度来进一步提高其准确率

下面给出一组参数:

初始学习率:initial_learning_rate=0.05

迭代步长:decay_steps=50,每50步改变一次学习率

下面是仿真结果:

我们可以看出,通过调整超参数,其既保证了损失函数能够快速下降,又进一步提高了其模型准确率,我们在训练次数为1500次的基础上,准确率已经达到97%以上。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 基于MTCNN/TensorFlow实现人脸检测

    人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等.对于opencv的人脸检测方法,有点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸,该方法可以检测出来,而侧面/歪斜/光线不好的人脸,无法检测.因此,该方法不适合现场应用.对于dlib人脸检测方法 ,效果好于opencv的方法,但是检测力度也难以达到现场应用标准. MTCNN是基于深度学习的人脸检测方法,对自然环境中光线,角度和人脸表情变化更具有鲁棒性,人脸检测效果更好:同时,内存消

  • TensorFlow实现卷积神经网络CNN

    一.卷积神经网络CNN简介 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因

  • tensorflow 1.0用CNN进行图像分类

    tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化. 任务:花卉分类 版本:tensorflow 1.0 数据:flower-photos 花总共有五类,分别放在5个文件夹下. 闲话不多说,直接上代码,希望大家能看懂:) 复制代码 # -*- coding: utf-8 -*- from skimage import io,transform import glob import os impor

  • 用tensorflow搭建CNN的方法

    CNN(Convolutional Neural Networks) 卷积神经网络简单讲就是把一个图片的数据传递给CNN,原涂层是由RGB组成,然后CNN把它的厚度加厚,长宽变小,每做一层都这样被拉长,最后形成一个分类器 在 CNN 中有几个重要的概念: stride padding pooling stride,就是每跨多少步抽取信息.每一块抽取一部分信息,长宽就缩减,但是厚度增加.抽取的各个小块儿,再把它们合并起来,就变成一个压缩后的立方体. padding,抽取的方式有两种,一种是抽取后的

  • TensorFlow深度学习之卷积神经网络CNN

    一.卷积神经网络的概述 卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此

  • 详解tensorflow训练自己的数据集实现CNN图像分类

    利用卷积神经网络训练图像数据分为以下几个步骤 1.读取图片文件 2.产生用于训练的批次 3.定义训练的模型(包括初始化参数,卷积.池化层等参数.网络) 4.训练 1 读取图片文件 def get_files(filename): class_train = [] label_train = [] for train_class in os.listdir(filename): for pic in os.listdir(filename+train_class): class_train.app

  • python tensorflow基于cnn实现手写数字识别

    一份基于cnn的手写数字自识别的代码,供大家参考,具体内容如下 # -*- coding: utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 加载数据集 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # 以交互式方式启动session # 如果不使用交互式session,则在启动s

  • TensorFlow实现简单的CNN的方法

    这里,我们将采用Tensor Flow内建函数实现简单的CNN,并用MNIST数据集进行测试 第1步:加载相应的库并创建计算图会话 import numpy as np import tensorflow as tf from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets import matplotlib.pyplot as plt #创建计算图会话 sess = tf.Session()

  • 利用TensorFlow训练简单的二分类神经网络模型的方法

    利用TensorFlow实现<神经网络与机器学习>一书中4.7模式分类练习 具体问题是将如下图所示双月牙数据集分类. 使用到的工具: python3.5    tensorflow1.2.1   numpy   matplotlib 1.产生双月环数据集 def produceData(r,w,d,num): r1 = r-w/2 r2 = r+w/2 #上半圆 theta1 = np.random.uniform(0, np.pi ,num) X_Col1 = np.random.unifo

  • 运用TensorFlow进行简单实现线性回归、梯度下降示例

    线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训练的好不好(即此函数是否足够拟合训练集数据),挑选出最好的函数(cost function最小)即可. 单变量线性回归: a) 因为是线性回归,所以学习到的函数为线性函数,即直线函数: b) 因为是单变量,因此只有一个x. 我们能够给出单变量线性回归的模型: 我们常称x为feature,h(x)为hypothesis. 上面介绍的方法中,我们肯定有一个疑问,怎样能够看出线性

  • TensorFlow模型保存和提取的方法

    一.TensorFlow模型保存和提取方法 1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,saver.save(sess,"Model/model.ckpt") ,实际在这个文件目录下会生成4个人文件: checkpoint文件保存了一个录下多有的模型文件列表,model.ckpt.meta保存了TensorFlow计算图的结构信息,model

  • TensorFlow Session使用的两种方法小结

    TensorFlow Session 在TensorFlow中是通过session进行交互的,使用session有两种方法.下面通过一个简单的例子(两个矩阵相乘)说一下 {[3,1] 与{[5,2] 相乘 [1,2]} [2,4]} 代码 #encoding=utf-8 import tensorflow as tf matrix1 = tf.constant([[3,1],[1,2]]) matrix2 = tf.constant([[5,2],[2,4]]) product = tf.mat

  • TensorFlow打印tensor值的实现方法

    最近一直在用TF做CNN的图像分类,当softmax层得到预测结果后,我希望能够看到预测结果,以便和标签之间进行比较.特此补上,以便自己记忆. 我现在通过softmax层得到变量train_logits,如果我直接执行print(train_logits)时,得到的结果如下(因为我是134类分类,所以结果是(1,134)维): 这貌似什么都看不出来. 其实tensorflow提供输出中间值方法方便debug. 这个函数就是[tf.Print]. tf.Print( input_, data, m

  • 使用Keras构造简单的CNN网络实例

    1. 导入各种模块 基本形式为: import 模块名 from 某个文件 import 某个模块 2. 导入数据(以两类分类问题为例,即numClass = 2) 训练集数据data 可以看到,data是一个四维的ndarray 训练集的标签 3. 将导入的数据转化我keras可以接受的数据格式 keras要求的label格式应该为binary class matrices,所以,需要对输入的label数据进行转化,利用keras提高的to_categorical函数 label = np_u

  • TensorFlow的环境配置与安装方法

    一. 简介 TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief. Tensorflow拥有多层级结构,可部署于各类服务器.PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究 . TensorFlow由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护,拥有包括Ten

  • 基于PyTorch实现一个简单的CNN图像分类器

    pytorch中文网:https://www.pytorchtutorial.com/ pytorch官方文档:https://pytorch.org/docs/stable/index.html 一. 加载数据 Pytorch的数据加载一般是用torch.utils.data.Dataset与torch.utils.data.Dataloader两个类联合进行.我们需要继承Dataset来定义自己的数据集类,然后在训练时用Dataloader加载自定义的数据集类. 1. 继承Dataset类并

随机推荐