python设置值及NaN值处理方法

如下所示:

python 设置值
import pandas as pd
import numpy as np
dates = pd.date_range('20180101',periods=6)
df = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['A','B','C','D'])
print(df)
    A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df.loc['20180102','A'] = 1111
print(df)
    A B C D
2018-01-01  0 1 2 3
2018-01-02 1111 5 6 7
2018-01-03  8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df.iloc[2,2] = 2222
print(df)
    A B  C D
2018-01-01  0 1  2 3
2018-01-02 1111 5  6 7
2018-01-03  8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df[df.A>12]=0 #修改df数据中符合条件的所有值
print(df)
    A B  C D
2018-01-01 0 1  2 3
2018-01-02 0 0  0 0
2018-01-03 8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 0 0  0 0
2018-01-06 0 0  0 0
df.A[df.A<4]=11 #修改df数据中A列符合条件的所有值
print(df)
    A B  C D
2018-01-01 11 1  2 3
2018-01-02 11 0  0 0
2018-01-03 8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 11 0  0 0
2018-01-06 11 0  0 0
df['F'] = np.nan
print(df)
    A B  C D F
2018-01-01 11 1  2 3 NaN
2018-01-02 11 0  0 0 NaN
2018-01-03 8 9 2222 11 NaN
2018-01-04 12 13 14 15 NaN
2018-01-05 11 0  0 0 NaN
2018-01-06 11 0  0 0 NaN
print(np.any(df.isnull())== True) #isnull检测是否含有NaN值,有就返回True。np.any()检测df数据中是否含有等于Ture的值
True

NaN值填充:print(df.fillna(value=0))

以上这篇python设置值及NaN值处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 解决pandas.DataFrame.fillna 填充Nan失败的问题

    如果单独是 >>> df.fillna(0) >>> print(df) # 可以看到未发生改变 >>> print(df.fillna(0)) # 如果直接打印是可以看到填充进去了 >>> print(df) # 但是再次打印就会发现没有了,还是Nan 将其Nan全部填充为0,这时再打印的话会发现根本未填充,这是因为没有加上参数inplace参数. 一定要将inplace = True加入参数,这样才能让源数据发生改变并保存. &g

  • Python中pandas dataframe删除一行或一列:drop函数详解

    用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 在这里默认:axis=0,指删除index,因此删除columns时要指定axis=1: inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新dataframe: inplace=True,则会直接在原数据上进行删除操作,删除后就回不来了. 例子: >>>df = pd.DataFrame(np.a

  • 使用DataFrame删除行和列的实例讲解

    本文通过一个csv实例文件来展示如何删除Pandas.DataFrame的行和列 数据文件名为:example.csv 内容为: date spring summer autumn winter 2000 12.2338809 16.90730113 15.69238313 14.08596223 2001 12.84748057 16.75046873 14.51406637 13.5037456 2002 13.558175 17.2033926 15.6999475 13.23365247

  • 数据清洗--DataFrame中的空值处理方法

    数据清洗是一项复杂且繁琐的工作,同时也是整个数据分析过程中最为重要的环节. 在python中空值被显示为NaN.首先,我们要构造一个包含NaN的DataFrame对象. >>> import numpy as np >>> import pandas as pd >>> from pandas import Series,DataFrame >>> from numpy import nan as NaN >>> d

  • 删除DataFrame中值全为NaN或者包含有NaN的列或行方法

    如果存在以下DataFrame 年龄 性别 手机号 0 2 男 NaN 1 3 女 NaN 2 4 NaN NaN 删除NaN所在的行: 删除表中全部为NaN的行 df.dropna(axis=0,how='all') 删除表中含有任何NaN的行 df.dropna(axis=0,how='any') #drop all rows that have any NaN values 删除NaN所在的列: 删除表中全部为NaN的行 df.dropna(axis=1,how='all') 删除表中含有

  • 在pandas中一次性删除dataframe的多个列方法

    之前沉迷于使用index删除,然而发现pandas貌似有bug? import pandas as pd import numpy as np df = pd.DataFrame(np.arange(12).reshape(3,4), columns=['A', 'B', 'C', 'D']) x=[1,2] df.drop(index=[1,2], axis=1, inplace=True) #axis=1,试图指定列,然并卵 print df 输出为 A B C D 0 0 1 2 3 还是

  • python设置值及NaN值处理方法

    如下所示: python 设置值 import pandas as pd import numpy as np dates = pd.date_range('20180101',periods=6) df = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['A','B','C','D']) print(df) A B C D 2018-01-01 0 1 2 3 2018-01-02 4 5 6 7 2018-01-03

  • Python设置默认编码为utf8的方法

    本文实例讲述了Python设置默认编码为utf8的方法.分享给大家供大家参考,具体如下: 这是Python的编码问题,设置python的默认编码为utf8 python安装目录:/etc/python2.x/sitecustomize.py import sys reload(sys) sys.setdefaultencoding('utf-8') try: import apport_python_hook except ImportError: pass else: apport_pytho

  • python设置环境变量的原因和方法

    相信很多初学python的小伙伴都会遇到这样的坑:环境变量配置不好,无法正常启动python.那么环境变量究竟是个什么东西呢?为什么要设置它?下面我们来说一说. 1.什么是环境变量 引用百度百科里面的解释:环境变量是在操作系统中一个具有特定名字的对象,它包含了一个或者多个应用程序所将使用到的信息.看到这里我相信大家可能还是有所疑惑,但是,不急,接着看. 2.为什么需要环境变量 windows系统下,假如我们安装了某一款软件,安装结束后,在安装目录会生成一个该软件的.exe文件,双击该文件,我们就

  • 在Pandas中处理NaN值的方法

    关于NaN值 -在能够使用大型数据集训练学习算法之前,我们通常需要先清理数据, 也就是说,我们需要通过某个方法检测并更正数据中的错误. - 任何给定数据集可能会出现各种糟糕的数据,例如离群值或不正确的值,但是我们几乎始终会遇到的糟糕数据类型是缺少值. - Pandas 会为缺少的值分配 NaN 值. 创建一个具有NaN值得 Data Frame import pandas as pd # We create a list of Python dictionaries # 创建一个字典列表 ite

  • 在JavaScript中使用NaN值的方法

    不带引号的字面常量NaN是一个特殊的值,表示不是非数字.由于NaN总是比较不等的情况,以任何数,包括NaN,它通常是用于指示应该返回一个有效的数的函数的错误条件. 注意:使用isNaN()全局函数来查看是否值是NaN值. 语法 您可以使用以下语法访问属性: var val = Number.NaN; 示例 : 在这里,dayOfMonth分配NaN,如果是大于31,并显示一条消息,表明有效范围: <html> <head> <script type="text/ja

  • Python Numpy:找到list中的np.nan值方法

    这个问题源于在训练机器学习的一个模型时,使用训练数据时提示prepare的数据中存在np.nan 报错信息如下: ValueError: np.nan is an invalid document, expected byte or unicode string. 刚开始不知道为什么会有这个,后来发现是list中存在nan值 下面是找到nan值的方法: 简单找到: import numpy as np x = np.array([2,3,np.nan,5, np.nan,5,2,3]) for

  • 在Python中给Nan值更改为0的方法

    如下所示: import pandas as pd df1 = pd.DataFrame([{'col1':'a', 'col2':1}, {'col1':'b', 'col2':2}]) df2 = pd.DataFrame([{'col1':'a', 'col3':11}, {'col1':'c', 'col3':33}]) data = pd.merge(left=df1, right=df2, how='left', left_on='col1', right_on='col1') pr

  • Python实现计算圆周率π的值到任意位的方法示例

    本文实例讲述了Python实现计算圆周率π的值到任意位的方法.分享给大家供大家参考,具体如下: 一.需求分析 输入想要计算到小数点后的位数,计算圆周率π的值. 二.算法:马青公式 π/4=4arctan1/5-arctan1/239 这个公式由英国天文学教授约翰·马青于1706年发现.他利用这个公式计算到了100位的圆周率.马青公式每计算一项可以得到1.4位的十进制精度.因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现. 三.python语言编写出求圆周率到任意

  • Python判断Nan值的五种方式小结

    目录 Python判断Nan值方式小结 numpy判断 Math判断 Pandas判断 判断是否等于自身 Nan不属于任何取值区间 python的nan处理 定义nan的方法 常见的计算结果为nan的情况 Python判断Nan值方式小结 numpy判断 import numpy as np nan = float('nan') print(np.isnan(nan)) True Math判断 import math nan = float('nan') print(math.isnan(nan

  • Numpy对于NaN值的判断方法

    numpy.nan的数据类型是float类型 import numpy as np type(np.nan) # float 任何数字和numpy.nan进行计算,返回的结果都是nan import numpy as np print(np.nan + 1) # nan print(np.nan - 1) # nan print(np.nan * 1) # nan print(np.nan / 1) # nan 对空值NaN的判断不能直接使用==表达式,bool表达式,以及不可直接使用if语句判

随机推荐