线程池的原理与实现详解

一. 线程池的简介
通常我们使用多线程的方式是,需要时创建一个新的线程,在这个线程里执行特定的任务,然后在任务完成后退出。这在一般的应用里已经能够满足我们应用的需求,毕竟我们并不是什么时候都需要创建大量的线程,并在它们执行一个简单的任务后销毁。

但是在一些web、email、database等应用里,比如彩铃,我们的应用在任何时候都要准备应对数目巨大的连接请求,同时,这些请求所要完成的任务却又可能非常的简单,即只占用很少的处理时间。这时,我们的应用有可能处于不停的创建线程并销毁线程的状态。虽说比起进程的创建,线程的创建时间已经大大缩短,但是如果需要频繁的创建线程,并且每个线程所占用的处理时间又非常简短,则线程创建和销毁带给处理器的额外负担也是很可观的。

线程池的作用正是在这种情况下有效的降低频繁创建销毁线程所带来的额外开销。一般来说,线程池都是采用预创建的技术,在应用启动之初便预先创建一定数目的线程。应用在运行的过程中,需要时可以从这些线程所组成的线程池里申请分配一个空闲的线程,来执行一定的任务,任务完成后,并不是将线程销毁,而是将它返还给线程池,由线程池自行管理。如果线程池中预先分配的线程已经全部分配完毕,但此时又有新的任务请求,则线程池会动态的创建新的线程去适应这个请求。当然,有可能,某些时段应用并不需要执行很多的任务,导致了线程池中的线程大多处于空闲的状态,为了节省系统资源,线程池就需要动态的销毁其中的一部分空闲线程。因此,线程池都需要一个管理者,按照一定的要求去动态的维护其中线程的数目。

基于上面的技术,线程池将频繁创建和销毁线程所带来的开销分摊到了每个具体执行的任务上,执行的次数越多,则分摊到每个任务上的开销就越小。

当然,如果线程创建销毁所带来的开销与线程执行任务的开销相比微不足道,可以忽略不计,则线程池并没有使用的必要。比如,FTP、Telnet等应用时。

二. 线程池的设计
下面利用C语言来实现一个简单的线程池,为了使得这个线程池库使用起来更加方便,特在C实现中加入了一些OO的思想,与Objective-C不同,它仅仅是使用了struct来模拟了c++中的类,其实这种方式在linux内核中大量可见。

在这个库里,与用户有关的接口主要有:


代码如下:

typedef struct tp_work_desc_s tp_work_desc; //应用线程执行任务时所需要的一些信息
       typedef struct tp_work_s tp_work; //线程执行的任务
       typedef struct tp_thread_info_s tp_thread_info; //描述了各个线程id,是否空闲,执行的任务等信息
       typedef struct tp_thread_pool_s tp_thread_pool; // 有关线程池操作的接口信息
         //thread parm
       struct tp_work_desc_s{
                  ……
        };
       //base thread struct
       struct tp_work_s{
                  //main process function. user interface
                  void (*process_job)(tp_work *this, tp_work_desc *job);
        };
        tp_thread_pool *creat_thread_pool(int min_num, int max_num);

tp_work_desc_s表示应用线程执行任务时所需要的一些信息,会被当作线程的参数传递给每个线程,依据应用的不同而不同,需要用户定义结构的内容。tp_work_s就是我们希望线程执行的任务了。当我们申请分配一个新的线程时,首先要明确的指定这两个结构,即该线程完成什么任务,并且完成这个任务需要哪些额外的信息。接口函数creat_thread_pool用来创建一个线程池的实例,使用时需要指定该线程池实例所能容纳的最小线程数min_num和最大线程数max_num。最小线程数即线程池创建时预创建的线程数目,这个数目的大小也直接影响了线程池所能起到的效果,如果指定的太小,线程池中预创建的线程很快就将分配完毕并需要创建新的线程来适应不断的请求,如果指定的太大,则将可能会有大量的空闲线程。我们需要根据自己应用的实际需要进行指定。描述线程池的结构如下:


代码如下:

//main thread pool struct
        struct tp_thread_pool_s{
             TPBOOL (*init)(tp_thread_pool *this);
             void (*close)(tp_thread_pool *this);
             void (*process_job)(tp_thread_pool *this, tp_work *worker, tp_work_desc *job);
             int  (*get_thread_by_id)(tp_thread_pool *this, int id);
             TPBOOL (*add_thread)(tp_thread_pool *this);
             TPBOOL (*delete_thread)(tp_thread_pool *this);
              int (*get_tp_status)(tp_thread_pool *this);
              int min_th_num;                //min thread number in the pool
              int cur_th_num;                 //current thread number in the pool
              int max_th_num;         //max thread number in the pool
              pthread_mutex_t tp_lock;
              pthread_t manage_thread_id;  //manage thread id num
              tp_thread_info *thread_info;   //work thread relative thread info
};
         结构tp_thread_info_s描述了各个线程id、是否空闲、执行的任务等信息,用户并不需要关心它。
         //thread info
         struct tp_thread_info_s{
              pthread_t          thread_id;         //thread id num
             TPBOOL                   is_busy;    //thread status:true-busy;flase-idle
             pthread_cond_t          thread_cond;
             pthread_mutex_t               thread_lock;
             tp_work                      *th_work;
             tp_work_desc            *th_job;
         };

tp_thread_pool_s结构包含了有关线程池操作的接口和变量。在使用creat_thread_pool返回一个线程池实例之后,首先要使用明确使用init接口对它进行初始化。在这个初始化过程中,线程池会预创建指定的最小线程数目的线程,它们都处于阻塞状态,并不损耗CPU,但是会占用一定的内存空间。同时init也会创建一个线程池的管理线程,这个线程会在线程池的运行周期内一直执行,它将定时的查看分析线程池的状态,如果线程池中空闲的线程过多,它会删除部分空闲的线程,当然它并不会使所有线程的数目小于指定的最小线程数。

在已经创建并初始化了线程池之后,我们就可以指定tp_work_desc_s和tp_work_s结构,并使用线程池的process_job接口来执行它们。这些就是我们使用这个线程池时所需要了解的所有东西。如果不再需要线程池,可以使用close接口销毁它。

三. 实现代码
Thread-pool.h(头文件):


代码如下:

#include <stdio.h>  
#include <stdlib.h>  
#include <sys/types.h>  
#include <pthread.h>  
#include <signal.h>

#ifndef TPBOOL  
typedef int TPBOOL; 
#endif

#ifndef TRUE  
#define TRUE 1  
#endif

#ifndef FALSE  
#define FALSE 0  
#endif

#define BUSY_THRESHOLD 0.5  //(busy thread)/(all thread threshold)  
#define MANAGE_INTERVAL 5   //tp manage thread sleep interval

typedef struct tp_work_desc_s tp_work_desc; 
typedef struct tp_work_s tp_work; 
typedef struct tp_thread_info_s tp_thread_info; 
typedef struct tp_thread_pool_s tp_thread_pool;

//thread parm  
struct tp_work_desc_s{ 
    char *inum; //call in  
    char *onum; //call out  
    int chnum;  //channel num  
};

//base thread struct  
struct tp_work_s{ 
    //main process function. user interface  
    void (*process_job)(tp_work *this, tp_work_desc *job); 
};

//thread info  
struct tp_thread_info_s{ 
    pthread_t       thread_id;  //thread id num  
    TPBOOL          is_busy;    //thread status:true-busy;flase-idle  
    pthread_cond_t          thread_cond;     
    pthread_mutex_t     thread_lock; 
    tp_work         *th_work; 
    tp_work_desc        *th_job; 
};

//main thread pool struct  
struct tp_thread_pool_s{ 
    TPBOOL (*init)(tp_thread_pool *this); 
    void (*close)(tp_thread_pool *this); 
    void (*process_job)(tp_thread_pool *this, tp_work *worker, tp_work_desc *job); 
    int  (*get_thread_by_id)(tp_thread_pool *this, int id); 
    TPBOOL (*add_thread)(tp_thread_pool *this); 
    TPBOOL (*delete_thread)(tp_thread_pool *this); 
    int (*get_tp_status)(tp_thread_pool *this);

int min_th_num;     //min thread number in the pool  
    int cur_th_num;     //current thread number in the pool  
    int max_th_num;         //max thread number in the pool  
    pthread_mutex_t tp_lock; 
    pthread_t manage_thread_id; //manage thread id num  
    tp_thread_info *thread_info;    //work thread relative thread info  
};

tp_thread_pool *creat_thread_pool(int min_num, int max_num);

Thread-pool.c(实现文件):


代码如下:

#include "thread-pool.h"

static void *tp_work_thread(void *pthread); 
static void *tp_manage_thread(void *pthread);

static TPBOOL tp_init(tp_thread_pool *this); 
static void tp_close(tp_thread_pool *this); 
static void tp_process_job(tp_thread_pool *this, tp_work *worker, tp_work_desc *job); 
static int  tp_get_thread_by_id(tp_thread_pool *this, int id); 
static TPBOOL tp_add_thread(tp_thread_pool *this); 
static TPBOOL tp_delete_thread(tp_thread_pool *this); 
static int  tp_get_tp_status(tp_thread_pool *this);

/**
  * user interface. creat thread pool.
  * para:
  *     num: min thread number to be created in the pool
  * return:
  *     thread pool struct instance be created successfully
  */ 
tp_thread_pool *creat_thread_pool(int min_num, int max_num){ 
    tp_thread_pool *this; 
    this = (tp_thread_pool*)malloc(sizeof(tp_thread_pool));

memset(this, 0, sizeof(tp_thread_pool));

//init member function ponter  
    this->init = tp_init; 
    this->close = tp_close; 
    this->process_job = tp_process_job; 
    this->get_thread_by_id = tp_get_thread_by_id; 
    this->add_thread = tp_add_thread; 
    this->delete_thread = tp_delete_thread; 
    this->get_tp_status = tp_get_tp_status;

//init member var  
    this->min_th_num = min_num; 
    this->cur_th_num = this->min_th_num; 
    this->max_th_num = max_num; 
    pthread_mutex_init(&this->tp_lock, NULL);

//malloc mem for num thread info struct  
    if(NULL != this->thread_info) 
        free(this->thread_info); 
    this->thread_info = (tp_thread_info*)malloc(sizeof(tp_thread_info)*this->max_th_num);

return this; 
}

/**
  * member function reality. thread pool init function.
  * para:
  *     this: thread pool struct instance ponter
  * return:
  *     true: successful; false: failed
  */ 
TPBOOL tp_init(tp_thread_pool *this){ 
    int i; 
    int err;

//creat work thread and init work thread info  
    for(i=0;i<this->min_th_num;i++){ 
        pthread_cond_init(&this->thread_info[i].thread_cond, NULL); 
        pthread_mutex_init(&this->thread_info[i].thread_lock, NULL);

err = pthread_create(&this->thread_info[i].thread_id, NULL, tp_work_thread, this); 
        if(0 != err){ 
            printf("tp_init: creat work thread failed\n"); 
            return FALSE; 
        } 
        printf("tp_init: creat work thread %d\n", this->thread_info[i].thread_id); 
    }

//creat manage thread  
    err = pthread_create(&this->manage_thread_id, NULL, tp_manage_thread, this); 
    if(0 != err){ 
        printf("tp_init: creat manage thread failed\n"); 
        return FALSE; 
    } 
    printf("tp_init: creat manage thread %d\n", this->manage_thread_id);

return TRUE; 
}

/**
  * member function reality. thread pool entirely close function.
  * para:
  *     this: thread pool struct instance ponter
  * return:
  */ 
void tp_close(tp_thread_pool *this){ 
    int i;

//close work thread  
    for(i=0;i<this->cur_th_num;i++){ 
        kill(this->thread_info[i].thread_id, SIGKILL); 
        pthread_mutex_destroy(&this->thread_info[i].thread_lock); 
        pthread_cond_destroy(&this->thread_info[i].thread_cond); 
        printf("tp_close: kill work thread %d\n", this->thread_info[i].thread_id); 
    }

//close manage thread  
    kill(this->manage_thread_id, SIGKILL); 
    pthread_mutex_destroy(&this->tp_lock); 
    printf("tp_close: kill manage thread %d\n", this->manage_thread_id);

//free thread struct  
    free(this->thread_info); 
}

/**
  * member function reality. main interface opened. 
  * after getting own worker and job, user may use the function to process the task.
  * para:
  *     this: thread pool struct instance ponter
  * worker: user task reality.
  * job: user task para
  * return:
  */ 
void tp_process_job(tp_thread_pool *this, tp_work *worker, tp_work_desc *job){ 
    int i; 
    int tmpid;

//fill this->thread_info's relative work key  
    for(i=0;i<this->cur_th_num;i++){ 
        pthread_mutex_lock(&this->thread_info[i].thread_lock); 
        if(!this->thread_info[i].is_busy){ 
            printf("tp_process_job: %d thread idle, thread id is %d\n", i, this->thread_info[i].thread_id); 
            //thread state be set busy before work  
            this->thread_info[i].is_busy = TRUE; 
            pthread_mutex_unlock(&this->thread_info[i].thread_lock);

this->thread_info[i].th_work = worker; 
            this->thread_info[i].th_job = job;

printf("tp_process_job: informing idle working thread %d, thread id is %d\n", i, this->thread_info[i].thread_id); 
            pthread_cond_signal(&this->thread_info[i].thread_cond);

return; 
        } 
        else  
            pthread_mutex_unlock(&this->thread_info[i].thread_lock);      
    }//end of for

//if all current thread are busy, new thread is created here  
    pthread_mutex_lock(&this->tp_lock); 
    if( this->add_thread(this) ){ 
        i = this->cur_th_num - 1; 
        tmpid = this->thread_info[i].thread_id; 
        this->thread_info[i].th_work = worker; 
        this->thread_info[i].th_job = job; 
    } 
    pthread_mutex_unlock(&this->tp_lock);

//send cond to work thread  
    printf("tp_process_job: informing idle working thread %d, thread id is %d\n", i, this->thread_info[i].thread_id); 
    pthread_cond_signal(&this->thread_info[i].thread_cond); 
    return;  
}

/**
  * member function reality. get real thread by thread id num.
  * para:
  *     this: thread pool struct instance ponter
  * id: thread id num
  * return:
  *     seq num in thread info struct array
  */ 
int tp_get_thread_by_id(tp_thread_pool *this, int id){ 
    int i;

for(i=0;i<this->cur_th_num;i++){ 
        if(id == this->thread_info[i].thread_id) 
            return i; 
    }

return -1; 
}

/**
  * member function reality. add new thread into the pool.
  * para:
  *     this: thread pool struct instance ponter
  * return:
  *     true: successful; false: failed
  */ 
static TPBOOL tp_add_thread(tp_thread_pool *this){ 
    int err; 
    tp_thread_info *new_thread;

if( this->max_th_num <= this->cur_th_num ) 
        return FALSE;

//malloc new thread info struct  
    new_thread = &this->thread_info[this->cur_th_num];

//init new thread's cond & mutex  
    pthread_cond_init(&new_thread->thread_cond, NULL); 
    pthread_mutex_init(&new_thread->thread_lock, NULL);

//init status is busy  
    new_thread->is_busy = TRUE;

//add current thread number in the pool.  
    this->cur_th_num++;

err = pthread_create(&new_thread->thread_id, NULL, tp_work_thread, this); 
    if(0 != err){ 
        free(new_thread); 
        return FALSE; 
    } 
    printf("tp_add_thread: creat work thread %d\n", this->thread_info[this->cur_th_num-1].thread_id);

return TRUE; 
}

/**
  * member function reality. delete idle thread in the pool.
  * only delete last idle thread in the pool.
  * para:
  *     this: thread pool struct instance ponter
  * return:
  *     true: successful; false: failed
  */ 
static TPBOOL tp_delete_thread(tp_thread_pool *this){ 
    //current thread num can't < min thread num  
    if(this->cur_th_num <= this->min_th_num) return FALSE;

//if last thread is busy, do nothing  
    if(this->thread_info[this->cur_th_num-1].is_busy) return FALSE;

//kill the idle thread and free info struct  
    kill(this->thread_info[this->cur_th_num-1].thread_id, SIGKILL); 
    pthread_mutex_destroy(&this->thread_info[this->cur_th_num-1].thread_lock); 
    pthread_cond_destroy(&this->thread_info[this->cur_th_num-1].thread_cond);

//after deleting idle thread, current thread num -1  
    this->cur_th_num--;

return TRUE; 
}

/**
  * member function reality. get current thread pool status:idle, normal, busy, .etc.
  * para:
  *     this: thread pool struct instance ponter
  * return:
  *     0: idle; 1: normal or busy(don't process)
  */ 
static int  tp_get_tp_status(tp_thread_pool *this){ 
    float busy_num = 0.0; 
    int i;

//get busy thread number  
    for(i=0;i<this->cur_th_num;i++){ 
        if(this->thread_info[i].is_busy) 
            busy_num++; 
    }

//0.2? or other num?  
    if(busy_num/(this->cur_th_num) < BUSY_THRESHOLD) 
        return 0;//idle status  
    else 
        return 1;//busy or normal status      
}

/**
  * internal interface. real work thread.
  * para:
  *     pthread: thread pool struct ponter
  * return:
  */ 
static void *tp_work_thread(void *pthread){ 
    pthread_t curid;//current thread id  
    int nseq;//current thread seq in the this->thread_info array  
    tp_thread_pool *this = (tp_thread_pool*)pthread;//main thread pool struct instance

//get current thread id  
    curid = pthread_self();

//get current thread's seq in the thread info struct array.  
    nseq = this->get_thread_by_id(this, curid); 
    if(nseq < 0) 
        return; 
    printf("entering working thread %d, thread id is %d\n", nseq, curid);

//wait cond for processing real job.  
    while( TRUE ){ 
        pthread_mutex_lock(&this->thread_info[nseq].thread_lock); 
        pthread_cond_wait(&this->thread_info[nseq].thread_cond, &this->thread_info[nseq].thread_lock); 
        pthread_mutex_unlock(&this->thread_info[nseq].thread_lock);

printf("%d thread do work!\n", pthread_self());

tp_work *work = this->thread_info[nseq].th_work; 
        tp_work_desc *job = this->thread_info[nseq].th_job;

//process  
        work->process_job(work, job);

//thread state be set idle after work  
        pthread_mutex_lock(&this->thread_info[nseq].thread_lock);         
        this->thread_info[nseq].is_busy = FALSE; 
        pthread_mutex_unlock(&this->thread_info[nseq].thread_lock);

printf("%d do work over\n", pthread_self()); 
    }    
}

/**
  * internal interface. manage thread pool to delete idle thread.
  * para:
  *     pthread: thread pool struct ponter
  * return:
  */ 
static void *tp_manage_thread(void *pthread){ 
    tp_thread_pool *this = (tp_thread_pool*)pthread;//main thread pool struct instance

//1?  
    sleep(MANAGE_INTERVAL);

do{ 
        if( this->get_tp_status(this) == 0 ){ 
            do{ 
                if( !this->delete_thread(this) ) 
                    break; 
            }while(TRUE); 
        }//end for if

//1?  
        sleep(MANAGE_INTERVAL); 
    }while(TRUE); 
}

四. 数据库连接池介绍   
数据库连接是一种关键的有限的昂贵的资源,这一点在多用户的网页应用程序中体现得尤为突出。

一个数据库连接对象均对应一个物理数据库连接,每次操作都打开一个物理连接,使用完都关闭连接,这样造成系统的 性能低下。 数据库连接池的解决方案是在应用程序启动时建立足够的数据库连接,并讲这些连接组成一个连接池(简单说:在一个“池”里放了好多半成品的数据库联接对象),由应用程序动态地对池中的连接进行申请、使用和释放。对于多于连接池中连接数的并发请求,应该在请求队列中排队等待。并且应用程序可以根据池中连接的使用率,动态增加或减少池中的连接数。

连接池技术尽可能多地重用了消耗内存地资源,大大节省了内存,提高了服务器地服务效率,能够支持更多的客户服务。通过使用连接池,将大大提高程序运行效率,同时,我们可以通过其自身的管理机制来监视数据库连接的数量、使用情况等。

1)  最小连接数是连接池一直保持的数据库连接,所以如果应用程序对数据库连接的使用量不大,将会有大量的数据库连接资源被浪费;

2)  最大连接数是连接池能申请的最大连接数,如果数据库连接请求超过此数,后面的数据库连接请求将被加入到等待队列中,这会影响之后的数据库操作。

(0)

相关推荐

  • C#实现线程池的简单示例

    本文以实例演示了C#线程池的简单实现方法.程序中定义了一个对象类,用以包装参数,实现多个参数的传递.成员属性包括两个输入参数和一个输出参数.代码简单易懂,备有注释便于理解. 具体实现代码如下: using System; using System.Threading; //定义对象类,用以包装参数,实现多个参数的传递 class Packet { //成员属性包括两个输入参数和一个输出参数 protected internal String inval1; protected internal

  • 深入java线程池的使用详解

    在Java 5.0之前启动一个任务是通过调用Thread类的start()方法来实现的,任务的提于交和执行是同时进行的,如果你想对任务的执行进行调度或是控制 同时执行的线程数量就需要额外编写代码来完成.5.0里提供了一个新的任务执行架构使你可以轻松地调度和控制任务的执行,并且可以建立一个类似数据库连接 池的线程池来执行任务.这个架构主要有三个接口和其相应的具体类组成.这三个接口是Executor, ExecutorService.ScheduledExecutorService,让我们先用一个图

  • C#线程池用法详细介绍

    介绍 .NET Framework提供了包含ThreadPool类的System.Threading 空间,这是一个可直接访问的静态类,该类对线程池是必不可少的.它是公共"线程池"设计样式的实现.对于后台运行许多各不相同的任务是有用的.对于单个的后台线种而言有更好的选项. 线程的最大数量.这是完全无须知道的.在.NET中ThreadPool的所有要点是它自己在内部管理线程池中线程.多核机器将比以往的机器有更多的线程.微软如此陈述"线程池通常有一个线程的最大数量,如果所有的线程

  • 在Android线程池里运行代码任务实例

    本节展示如何在线程池里执行任务.流程是,添加一个任务到线程池的工作队列,当有线程可用时(执行完其他任务,空闲,或者还没执行任务),ThreadPoolExecutor会从队列里取任务,并在线程里运行. 本课同时向你展示了如何停止正在运行的任务. 在线程池里的线程上执行任务 在ThreadPoolExecutor.execute()里传入 Runnable对象启动任务.这个方法会把任务添加到线程池工作队列.当有空闲线程时,管理器会取出等待最久的任务,在线程上运行. 复制代码 代码如下: publi

  • .net重启iis线程池和iis站点程序代码分享

    重启站点: 复制代码 代码如下: /// <summary>        /// 根据名字重启站点.(没重启线程池)        /// </summary>        /// <param name="sitename"></param>        static void RestartWEbSite(string sitename)        {            try            {         

  • java中通用的线程池实例代码

    复制代码 代码如下: package com.smart.frame.task.autoTask; import java.util.Collection;import java.util.Vector; /** * 任务分发器 */public class TaskManage extends Thread{    protected Vector<Runnable> tasks = new Vector<Runnable>();    protected boolean run

  • Java代码构建一个线程池

    在现代的操作系统中,有一个很重要的概念――线程,几乎所有目前流行的操作系统都支持线程,线程来源于操作系统中进程的概念,进程有自己的虚拟地址空间以及正文段.数据段及堆栈,而且各自占有不同的系统资源(例如文件.环境变量等等).与此不同,线程不能单独存在,它依附于进程,只能由进程派生.如果一个进程派生出了两个线程,那这两个线程共享此进程的全局变量和代码段,但每个线程各拥有各自的堆栈,因此它们拥有各自的局部变量,线程在UNIX系统中还被进一步分为用户级线程(由进程自已来管理)和系统级线程(由操作系统的调

  • C++线程池的简单实现方法

    本文以实例形式较为详细的讲述了C++线程池的简单实现方法.分享给大家供大家参考之用.具体方法如下: 一.几个基本的线程函数: 1.线程操纵函数: int pthread_create(pthread_t *tidp, const pthread_attr_t *attr, (void*)(*start_rtn)(void *), void *arg); //创建 void pthread_exit(void *retval); //终止自身 int pthread_cancel(pthread_

  • python线程池的实现实例

    直接上代码: 复制代码 代码如下: # -*- coding: utf-8 -*- import Queue import threadingimport urllibimport urllib2import os def down(url,n):    print 'item '+str(n)+' start '    filename=urllib2.unquote(url).decode('utf8').split('/')[-1]    urllib.urlretrieve(url, f

  • 支持生产阻塞的Java线程池

    通常来说,生产任务的速度要大于消费的速度.一个细节问题是,队列长度,以及如何匹配生产和消费的速度. 一个典型的生产者-消费者模型如下:   在并发环境下利用J.U.C提供的Queue实现可以很方便地保证生产和消费过程中的线程安全.这里需要注意的是,Queue必须设置初始容量,防止生产者生产过快导致队列长度暴涨,最终触发OutOfMemory. 对于一般的生产快于消费的情况.当队列已满时,我们并不希望有任何任务被忽略或得不到执行,此时生产者可以等待片刻再提交任务,更好的做法是,把生产者阻塞在提交任

  • c++版线程池和任务池示例

    commondef.h 复制代码 代码如下: //单位秒,监测空闲列表时间间隔,在空闲队列中超过TASK_DESTROY_INTERVAL时间的任务将被自动销毁const int CHECK_IDLE_TASK_INTERVAL = 300;//单位秒,任务自动销毁时间间隔const int TASK_DESTROY_INTERVAL = 60; //监控线程池是否为空时间间隔,微秒const int IDLE_CHECK_POLL_EMPTY = 500; //线程池线程空闲自动退出时间间隔

  • 利用ace的ACE_Task等类实现线程池的方法详解

    本代码应该是ace自带的例子了,但是我觉得是非常好的,于是给大家分享一下.注释非常详细啊.头文件 复制代码 代码如下: #ifndef THREAD_POOL_H#define THREAD_POOL_H/* In order to implement a thread pool, we have to have an object that   can create a thread.  The ACE_Task<> is the basis for doing just   such a

随机推荐