Python退火算法在高次方程的应用

,简介

退火算法不言而喻,就是钢铁在淬炼过程中失温而成稳定态时的过程,热力学上温度(内能)越高原子态越不稳定,而温度有一个向低温区辐射降温的物理过程,当物质内能不再降低时候该物质原子态逐渐成为稳定有序态,这对我们从随机复杂问题中找出最优解有一定借鉴意义,将这个过程化为算法,具体参见其他资料。

二,计算方程

我们所要计算的方程是f(x) = (x - 2) * (x + 3) * (x + 8) * (x - 9),是一个一元四次方程,我们称为高次方程,当然这个函数的开口是向上的,那么在一个无限长的区间内我们可能找不出最大值点,因此我们尝试在较短区间内解最小值点,我们成为最优解。

解法1:

毫无疑问,数学方法多次求导基本可以解出,但是这个过程较复杂,还容易算错,我就不赘述了,读者有时间自己可以尝试解一下。

解法二:

这个解法就是暴力解决了,我们这里只求解区间[-10,10]上的最优解,直接随机200个点,再除以10(这样可以得到非整数横坐标),再依此计算其纵坐标f(x),min{f(x)}一下,用list的index方法找出最小值对应位置就行了,然后画出图形大致瞄一瞄。

直接贴代码:

 import random
 import matplotlib.pyplot as plt
 list_x = []
 # for i in range(1):
 #   #print(random.randint(0,100))
 #   for i in range(0,100):
 #     print("sss",i)
 #
 #   list_x.append(random.randint(0,100))
 for i in range(-100,100):
   list_x.append(i/10)
 print("横坐标为:",list_x)
 print(len(list_x))
 list_y = []
 for x in list_x:
   # print(x)
   #y = x*x*x - 60*x*x -4*x +6
   y = (x - 2) * (x + 3) * (x + 8) * (x - 9)
   list_y.append(y)
 print("纵坐标为:",list_y)
 #经验证,这里算出来的结果6.5和最优解1549都是对的
 print("最小值为:",min(list_y))
 num = min(list_y)
 print("最优解:",list_y.index(num)/10)
 print("第",list_y.index(num)/10-10,"个位置取得最小值")
 plt.plot(list_x, list_y, label='NM')
 #plt.plot(x2, y2, label='Second Line')
 plt.xlabel('X') #横坐标标题
 plt.ylabel('Y') #纵坐标标题
 #plt.title('Interesting Graph\nCheck it out',loc="right")  #图像标题
 #plt.title('Interesting Graph\nCheck it out')
 plt.legend()  #显示Fisrt Line和Second Line(label)的设置
 plt.savefig('C:/Users/zhengyong/Desktop/1.png')
 plt.show()

得到如下结果:

那么我们得出最优解的坐标是(6.5,-1549.6875),结果先放这里,接下来用退火算法看能不能解出。

解法三:

我们看一张图(解法二中的方法得出的图),然后讲讲退火算法的最核心的思想。

首先,先随机一个[-10.10]之间的随机解,作为初始解空间,比方说随机了一个位于[-2.5.2.5]中最高的那个点就是点1(横坐标为x1),他有对于的纵坐标的值y1,这时候我们把这个点的横坐标随机加或者减去一个值(注意这个值的大小很重要,我们先叫他随机移动值),加或者减后得到新的横坐标的值x2,再算出这个横坐标的对应纵坐标(y2),对比之前的纵坐标的大小,这里设置

delta = y2-y1,发现无论怎样都是小于原先的纵坐标(前提是随机移动值足够小),这时候我们把新得到的x2赋值给x1,这时候现在的x2的值传给x1,x1是原先随机的值,这个过程可以重复iter_num 次,大小就根据自己的区间来。
上述的整个过程是在一个温度下进行的,这个过程结束后我们用温度更新公式再次的更新温度,再去重复上述步骤。

温度更新我是用的常用的公式是T(t)=aT0(t-1),其中0.85≦a≦0.99。也可用相应的热能衰减公式来计算,T(t)=T0/(1+lnt),t=1,2,3,...,这都是简单的状态更新方法。

也就是说,不管你随机的是几我都能朝着优化的方向前进(前提是非最优点)。

其次,点2 是同理的,区别在于他是局部最优解,那么跳出这个局部最优解的机制是什么呢?

若初始点是(x3,y3),然后用上述方法得出(x4,y4),在点二处得到的delta肯定是大于0的,那么怎么办呢?当大于0的时候我们每次都有一定的概率来接受这个看起来不是最优的点,叫Metropolis准则,具体是这样的:

这里的E就是y,T就是当前温度,delta小于0就是百分百接受新值,否者就是按照这个概率接受,当迭代多次的时候,每次向右移动的步长累加到点1 时候他就有可能找到最终的最优解了,步长是累加的但是概率是累成的,意味着这个概率很小,但是一旦迭代次数多久一定会跑出来到最优解处。

最优,点3不解释了哈,和上面一样。

那么我们上代码:

 #自己改写的退火算法计算方程(x - 2) * (x + 3) * (x + 8) * (x - 9)的计算方法
 #class没啥用
 import numpy as np
 import matplotlib.pyplot as plt
 from matplotlib import pyplot as plt
 #设置基本参数
 #T初始温度,T_stop,iter_num每个温度的迭代次数,Q温度衰减次数
 class Tuihuo_alg():
   def __init__(self,T_start,iter_num,T_stop,Q,xx,init_x):
     self.T_start = T_start
     self.iter =iter_num
     self.T_stop = T_stop
     self.Q = Q
     self.xx = xx
     self.init_x = init_x
   # def cal_x2y(self):
   #   return (x - 2) * (x + 3) * (x + 8) * (x - 9)
 if __name__ == '__main__':
   def cal_x2y(x):
     #print((x - 2) * (x + 3) * (x + 8) * (x - 9))
     return (x - 2) * (x + 3) * (x + 8) * (x - 9)
   T_start = 1000
   iter_num = 1000
   T_stop = 1
   Q = 0.95
   K = 1
   l_boundary = -10
   r_boundary = 10
   #初始值
   xx = np.linspace(l_boundary, r_boundary, 300)
   yy = cal_x2y(xx)
   init_x =10 * ( 2 * np.random.rand() - 1)
   print("init_x:",init_x)
   t = Tuihuo_alg(T_start,iter_num,T_stop,Q,xx,init_x)
   val_list = [init_x]
   while T_start>T_stop:
     for i in range(iter_num):
       init_y = cal_x2y(init_x)
       #这个区间(2 * np.random.rand() - 1)本身是(-1,1),所以加上就是一个随机加或者减过程
       new_x = init_x + (2 * np.random.rand() - 1)
       if l_boundary <= new_x <= r_boundary:
         new_y = cal_x2y(new_x)
     #print("new_x:",new_x)
     #print('new_y:',new_y)
         delta = new_y - init_y #新减旧
         if delta < 0:
           init_x = new_x
         else:
           p = np.exp(-delta / (K * T_start))
           if np.random.rand() < p:
             init_x = new_x
       #print("new_x:",new_x)
       #print("当前温度:",T_start)
     T_start = T_start * Q
 print("最优解x是:", init_x)  #这里最初写的是new_x,所以结果一直不对
 print("最优解是:", init_y)
 #比如我加上new_x,真假之间的误差实际就是最后一次的赋值“init_x = new_x”
 print("假最优解x是:", new_x)  #这里最初写的是new_x,所以结果一直不对
 print("假最优解是:", new_y)
 xx = np.linspace(l_boundary,r_boundary,300)
 yy = cal_x2y(xx)
 plt.plot(xx, yy, label='Tuihuo')
 #plt.plot(x2, y2, label='Second Line')
 plt.xlabel('X for tuihuo') #横坐标标题
 plt.ylabel('Y for tuihuo') #纵坐标标题
 #plt.title('Interesting Graph\nCheck it out',loc="right")  #图像标题
 #plt.title('Interesting Graph\nCheck it out')
 plt.legend()  #显示Fisrt Line和Second Line(label)的设置
 plt.savefig('C:/Users/zhengyong/Desktop/1.png')
 plt.show()

这里用了class,发现并不需要,但是不想改了,就这样吧。

最优结果为:

得出的示意图为:

三,总结

退火算法的具体思想我没怎么讲,但是核心的点我都写出来了,经过验证发现退火算法得出了(6.551677228904226,-1548.933671426107)的最优解,看看解法二的(6.5,-1549.6875),我们发现,呵呵,差不多,误差来讲的话,能接受,当然读者也可以多跑几个数据出来验证。

我的实验环境是Python3.6,Numpy1.14.3,matplotlib2.2.2,64位win10,1709教育版,OS内核16299.547,就这样吧,尽量讲详细点。

总结

以上所述是小编给大家介绍的Python退火算法在高次方程的应用,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • Python退火算法在高次方程的应用

    一,简介 退火算法不言而喻,就是钢铁在淬炼过程中失温而成稳定态时的过程,热力学上温度(内能)越高原子态越不稳定,而温度有一个向低温区辐射降温的物理过程,当物质内能不再降低时候该物质原子态逐渐成为稳定有序态,这对我们从随机复杂问题中找出最优解有一定借鉴意义,将这个过程化为算法,具体参见其他资料. 二,计算方程 我们所要计算的方程是f(x) = (x - 2) * (x + 3) * (x + 8) * (x - 9),是一个一元四次方程,我们称为高次方程,当然这个函数的开口是向上的,那么在一个无限

  • python插入排序算法实例分析

    本文实例讲述了python插入排序算法.分享给大家供大家参考.具体如下: def insertsort(array): for removed_index in range(1, len(array)): removed_value = array[removed_index] insert_index = removed_index while insert_index > 0 and array[insert_index - 1] > removed_value: array[insert

  • Python聚类算法之DBSACN实例分析

    本文实例讲述了Python聚类算法之DBSACN.分享给大家供大家参考,具体如下: DBSCAN:是一种简单的,基于密度的聚类算法.本次实现中,DBSCAN使用了基于中心的方法.在基于中心的方法中,每个数据点的密度通过对以该点为中心以边长为2*EPs的网格(邻域)内的其他数据点的个数来度量.根据数据点的密度分为三类点: 核心点:该点在邻域内的密度超过给定的阀值MinPs. 边界点:该点不是核心点,但是其邻域内包含至少一个核心点. 噪音点:不是核心点,也不是边界点. 有了以上对数据点的划分,聚合可

  • Python聚类算法之凝聚层次聚类实例分析

    本文实例讲述了Python聚类算法之凝聚层次聚类.分享给大家供大家参考,具体如下: 凝聚层次聚类:所谓凝聚的,指的是该算法初始时,将每个点作为一个簇,每一步合并两个最接近的簇.另外即使到最后,对于噪音点或是离群点也往往还是各占一簇的,除非过度合并.对于这里的"最接近",有下面三种定义.我在实现是使用了MIN,该方法在合并时,只要依次取当前最近的点对,如果这个点对当前不在一个簇中,将所在的两个簇合并就行: 单链(MIN):定义簇的邻近度为不同两个簇的两个最近的点之间的距离. 全链(MAX

  • python标准算法实现数组全排列的方法

    本文实例讲述了python标准算法实现数组全排列的方法,代码来自国外网站.分享给大家供大家参考.具体分析如下: 从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列.当m=n时所有的排列情况叫全排列. def Mideng(li): if(type(li)!=list): return if(len(li)==1): return [li] result=[] for i in range(0,len(li[:])): bak=li[:] h

  • Python聚类算法之基本K均值实例详解

    本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所期望的簇的个数.每次循环中,每个点被指派到最近的质心,指派到同一个质心的点集构成一个.然后,根据指派到簇的点,更新每个簇的质心.重复指派和更新操作,直到质心不发生明显的变化. # scoding=utf-8 import pylab as pl points = [[int(eachpoint.split("#")[0]), in

  • Python深度优先算法生成迷宫

    本文实例为大家分享了Python深度优先算法生成迷宫,供大家参考,具体内容如下 import random #warning: x and y confusing sx = 10 sy = 10 dfs = [[0 for col in range(sx)] for row in range(sy)] maze = [[' ' for col in range(2*sx+1)] for row in range(2*sy+1)] #1:up 2:down 3:left 4:right opera

  • Python贪心算法实例小结

    本文实例讲述了Python贪心算法.分享给大家供大家参考,具体如下: 1. 找零钱问题:假设只有 1 分. 2 分.五分. 1 角.二角. 五角. 1元的硬币.在超市结账 时,如果 需要找零钱, 收银员希望将最少的硬币数找给顾客.那么,给定 需要找的零钱数目,如何求得最少的硬币数呢? # -*- coding:utf-8 -*- def main(): d = [0.01,0.02,0.05,0.1,0.2,0.5,1.0] # 存储每种硬币面值 d_num = [] # 存储每种硬币的数量 s

  • Python排序算法之选择排序定义与用法示例

    本文实例讲述了Python排序算法之选择排序定义与用法.分享给大家供大家参考,具体如下: 选择排序 选择排序比较好理解,好像是在一堆大小不一的球中进行选择(以从小到大,先选最小球为例): 1. 选择一个基准球 2. 将基准球和余下的球进行一一比较,如果比基准球小,则进行交换 3. 第一轮过后获得最小的球 4. 在挑一个基准球,执行相同的动作得到次小的球 5. 继续执行4,直到排序好 时间复杂度:O(n^2).  需要进行的比较次数为第一轮 n-1,n-2....1, 总的比较次数为 n*(n-1

  • Python机器学习算法库scikit-learn学习之决策树实现方法详解

    本文实例讲述了Python机器学习算法库scikit-learn学习之决策树实现方法.分享给大家供大家参考,具体如下: 决策树 决策树(DTs)是一种用于分类和回归的非参数监督学习方法.目标是创建一个模型,通过从数据特性中推导出简单的决策规则来预测目标变量的值. 例如,在下面的例子中,决策树通过一组if-then-else决策规则从数据中学习到近似正弦曲线的情况.树越深,决策规则越复杂,模型也越合适. 决策树的一些优势是: 便于说明和理解,树可以可视化表达: 需要很少的数据准备.其他技术通常需要

随机推荐