浅谈oracle SCN机制

SCN(System Change Number)作为oracle中的一个重要机制,在数据恢复、Data Guard、Streams复制、RAC节点间的同步等各个功能中起着重要作用。理解SCN的运作机制,可以帮助你更加深入地了解上述功能。

在理解SCN之前,我们先看下oracle事务中的数据变化是如何写入数据文件的:

1、事务开始;

2、在buffer cache中找到需要的数据块,如果没有找到,则从数据文件中载入buffer cache中;

3、事务修改buffer cache的数据块,该数据被标识为“脏数据”,并被写入log buffer中;

4、事务提交,LGWR进程将log buffer中的“脏数据”写入redo log file中;

5、当发生checkpoint,CKPT进程更新所有数据文件的文件头中的信息,DBWn进程则负责将Buffer Cache中的脏数据写入到数据文件中。

经过上述5个步骤,事务中的数据变化最终被写入到数据文件中。但是,一旦在上述中间环节时,数据库意外宕机了,在重新启动时如何知道哪些数据已经写入数据文件、哪些没有写呢(同样,在DG、streams中也存在类似疑问:redo log中哪些是上一次同步已经复制过的数据、哪些没有)?SCN机制就能比较完善的解决上述问题。

SCN是一个数字,确切的说是一个只会增加、不会减少的数字。正是它这种只会增加的特性确保了Oracle知道哪些应该被恢复、哪些应该被复制。

总共有4中SCN:系统检查点(System Checkpoint)SCN、数据文件检查点(Datafile Checkpoint)SCN、结束SCN(Stop SCN)、开始SCN(Start SCN)。其中其面3中SCN存在于控制文件中,最后一种则存在于数据文件的文件头中。

在控制文件中,System Checkpoint SCN是针对整个数据库全局的,因而之存在一个,而Datafile Checkpoint SCN和Stop SCN是针对每个数据文件的,因而一个数据文件就对应在控制文件中存在一份Datafile Checkpoint SCN和Stop SCN。在数据库正常运行期间,Stop SCN(通过视图v$datafile的字段last_change#可以查询)是一个无穷大的数字或者说是NULL。

在一个事务提交后(上述第四个步骤),会在redo log中存在一条redo记录,同时,系统为其提供一个最新的SCN(通过函数dbms_flashback.get_system_change_number可以知道当前的最新SCN),记录在该条记录中。如果该条记录是在redo log被清空(日志满做切换时或发生checkpoint时,所有变化日志已经被写入数据文件中),则其SCN被记录为redo log的low SCN。以后在日志再次被清空前写入的redo记录中SCN则成为Next SCN。

当日志切换或发生checkpoint(上述第五个步骤)时,从Low SCN到Next SCN之间的所有redo记录的数据就被DBWn进程写入数据文件中,而CKPT进程则将所有数据文件(无论redo log中的数据是否影响到该数据文件)的文件头上记录的Start SCN(通过视图v$datafile_header的字段checkpoint_change#可以查询)更新为Next SCN,同时将控制文件中的System Checkpoint SCN(通过视图v$database的字段checkpoint_change#可以查询)、每个数据文件对应的Datafile Checkpoint(通过视图v$datafile的字段checkpoint_change#可以查询)也更新为Next SCN。但是,如果该数据文件所在的表空间被设置为read-only时,数据文件的Start SCN和控制文件中Datafile Checkpoint SCN都不会被更新。

那系统是如何产生一个最新的SCN的?实际上,这个数字是由当时的timestamp转换过来的。每当需要产生一个最新的SCN到redo记录时,系统获取当时的timestamp,将其转换为数字作为SCN。我们可以通过函数SCN_TO_TIMESTAMP(10g以后)将其转换回timestamp:

SQL> select dbms_flashback.get_system_change_number, SCN_TO_TIMESTAMP(dbms_flashback.get_system_change_number) from dual;

GET_SYSTEM_CHANGE_NUMBER
------------------------
SCN_TO_TIMESTAMP(DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER)
---------------------------------------------------------------------------
    2877076756
17-AUG-07 02.15.26.000000000 PM

也可以用函数timestamp_to_scn将一个timestamp转换为SCN:

SQL> select timestamp_to_scn(SYSTIMESTAMP) as scn from dual;

  SCN
----------
2877078439

最后,SCN除了作为反映事务数据变化并保持同步外,它还起到系统的“心跳”作用——每隔3秒左右系统会刷新一次系统SCN。

下面,在简单介绍一下SCN如何在数据库恢复中起作用。

数据库在正常关闭(shutdown immediate/normal)时,会先做一次checkpoint,将log file中的数据写入数据文件中,将控制文件、数据文件中的SCN(包括控制文件中的Stop SCN)都更新为最新的SCN。

数据库异常/意外关闭不会或者只更新部分Stop SCN。

当数据库启动时,Oracle先检查控制文件中的每个Datafile Checkpoint SCN和数据文件中的Start SCN是否相同,再检查每个Datafile Checkpoint SCN和Stop SCN是否相同。如果发现有不同,就从Redo Log中找到丢失的SCN,重新写入数据文件中进行恢复。具体的数据恢复过程这里就不再赘述。

SCN作为Oracle中的一个重要机制,在多个重要功能中起着“控制器”的作用。了解SCN的产生和实现方式,帮助DBA理解和处理恢复、DG、Streams复制的问题。

最后提一句,利用SCN机制,在Oracle10g、11g中又增加了一些很实用的功能——数据库闪回、数据库负载重现等。

总结

以上就是本文关于浅谈oracle SCN机制的全部内容,希望对大家有所帮助。有兴趣的朋友可以参阅:Oracle EBS工具选项:关闭其他表单修改方法 、 oracle 数据库启动阶段分析 、 oracle 虚拟专用数据库详细介绍等。有什么问题可以随时留言,小编会及时回复大家的。感谢大家对我们的支持!

(0)

相关推荐

  • oracle SCN跟TIMESTAMP之间转换

    Sql代码 --获取当前的SCN 复制代码 代码如下: select dbms_flashback.get_system_change_number scn1, timestamp_to_scn(sysdate) scn2 from dual; --将SCN转换成功时间 复制代码 代码如下: select to_char(scn_to_timestamp(34607271), 'yyyy-mm-dd hh24:mi:ss') chr, timestamp_to_scn(scn_to_timest

  • Oracle SCN与检查点详解

    1.SCN 的定义 SCN(System Change Number ),也就是通常所说的系统改变号,是数据库中非常重要的 一个数据结构. SCN 用以标识数据库在某个确切时刻提交的版本.在事务提交时,它被赋予一个惟一的 标识事务的SCN.SCN 同时被作为 Oracle数据库的内部时钟机制,可被看作逻辑时钟,每个 数据库都有一个全局的 SCN 生成器. 作为数据库内部的逻辑时钟,数据库事务依 SCN 而排序,Oracle 也依据 SCN 来实现一致性读 (Read Consistency )等

  • 浅谈oracle SCN机制

    SCN(System Change Number)作为oracle中的一个重要机制,在数据恢复.Data Guard.Streams复制.RAC节点间的同步等各个功能中起着重要作用.理解SCN的运作机制,可以帮助你更加深入地了解上述功能. 在理解SCN之前,我们先看下oracle事务中的数据变化是如何写入数据文件的: 1.事务开始: 2.在buffer cache中找到需要的数据块,如果没有找到,则从数据文件中载入buffer cache中: 3.事务修改buffer cache的数据块,该数据

  • 浅谈oracle rac和分布式数据库的区别

    1.分布式数据库是多个数据库,而rac只是一个库多个实例: 2.rac事务上没有协调的问题,而分布式数据库由于是多个库需要事务上的协调: 3.分布式数据库数据是分散存储在各个节点,但是设备一般都是廉价的设备,经常出现节点故障,不过对用户来说是透明的:.RAC是ORACLE集群,数据是共享存储,只有一份,每个节点都不存放数据.节点可以宕,但是数据不会丢失: 4.分布式数据库支持的节点多,增加节点基本为线性增加:rac支持的节点数少,增加节点性能不是线性增加: 5.Oracle最大的问题在于shar

  • 浅谈oracle中单引号转义

    ORACLE 单引号转义: 在ORACLE中,单引号有两个作用: 1:字符串是由单引号引用 2:转义. 单引号的使用是就近配对,即就近原则.而在单引号充当转义角色时相对不好理解 1.从第二个单引号开始被视为转义符,如果第二个单引号后面还有单引号(哪怕只有一个). SQL> select '''' result from dual; RESULT ------ ' 第二个单引号被作为转义符,第三个单引号被转义,可将sql写成这样更好理解: select ' '' ' from dual; outp

  • 浅谈Oracle数据库的建模与设计

    正在看的ORACLE教程是:浅谈Oracle数据库的建模与设计.要开发一个基于数据库的应用系统,其中最关键的一步就是整个系统所依据的数据库的建模设计,从逻辑的到物理的,一个环节疏于设计,整个的应用系统便似建立在危房之上,随着开发过程的不断深入,它要随时面临着各种难 以预料的风险,开发者要为修改或重新设计没有设计好的数据库系统而付出难以预料的代价.所以,一个良好的数据库设计是高效率的系统所必须的. 一.逻辑建模 数据库设计的方法因具体数据库而异,但是建模阶段的相同的,所以可以用一些通用的工具来进行

  • 浅谈Swift派发机制

    直接派发 C++ 默认使用的是直接派发,加上 virtual 修饰符可以改成函数表派发.直接派发是最快的,原因是调用指令会少,还可以通过编译器进行比如内联等方式的优化.缺点是由于缺少动态性而不支持继承. struct DragonFirePosition { var x:Int64 var y:Int32 func land() {} } func DragonWillFire(_ position:DragonFirePosition) { position.land() } let posi

  • 浅谈Java 代理机制

    目录 一.常规编码方式 二.代理模式概述 三.静态代理 3.1.什么是静态代理 3.2.代码示例 四.Java 字节码生成框架 五.什么是动态代理 六.JDK 动态代理机制 6.1.使用步骤 6.2.代码示例 七.CGLIB 动态代理机制 7.1.使用步骤 7.2.代码示例 八.什么情况下使用动态代理 九.静态代理和动态代理对比 十.总结 一.常规编码方式 在学习代理之前,先回顾以下我们的常规编码方式:所有 interface 类型的变量总是通过向上转型并指向某个实例的. 1)首先,定义一个接口

  • 浅谈Linux信号机制

    一.信号列表 root@ubuntu:# kill -l  1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP  6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20)

  • 浅谈Flink容错机制之作业执行和守护进程

    一.作业执行容错 Flink 的错误恢复机制分为多个级别,即 Execution 级别的 Failover 策略和 ExecutionGraph 级别的 Job Restart 策略.当出现错误时,Flink 会先尝试触发范围小的错误恢复机制,如果仍处理不了才会升级为更大范围的错误恢复机制,具体可以看下面的序列图. 当 Task 发生错误,TaskManager 会通过 RPC 通知 JobManager,后者将对应 Execution 的状态转为 failed 并触发 Failover 策略.

  • 浅谈Android IPC机制之Binder的工作机制

    进程和线程的关系 按照操作系统中的描述,线程是CPU调度的最小单位,同时线程也是一种有限的系统资源.而进程一般是指一个执行单元,在pc端或者移动端上是指一个程序或者一个应用.一个进程中可以包含一个或者是多个线程.所以他们的关系应该是包含和被包含的关系. 跨进程的种类 在Android中跨进程通信的方式有很多种,Bundle,文件共享,AIDL,Messenger,ContentProvider,Socket,这些都能实现进程间之间的通信,当然,虽然都能够实现进程间通信,但是他们之间的实现原理或者

  • 浅谈Java锁机制

    目录 1.悲观锁和乐观锁 2.悲观锁应用 3.乐观锁应用 4.CAS 5.手写一个自旋锁 1.悲观锁和乐观锁 我们可以将锁大体分为两类: 悲观锁 乐观锁 顾名思义,悲观锁总是假设最坏的情况,每次获取数据的时候都认为别的线程会修改,所以每次在拿数据的时候都会上锁,这样其它线程想要修改这个数据的时候都会被阻塞直到获取锁.比如MySQL数据库中的表锁.行锁.读锁.写锁等,Java中的synchronized和ReentrantLock等. 而乐观锁总是假设最好的情况,每次获取数据的时候都认为别的线程不

随机推荐