Python 调用GPT-3 API实现过程详解

目录
  • 用 Python 调用 GPT-3 API
    • 安装 GPT-3
    • 特征工程
    • 模型选择
    • 生成合成数据
    • 公共数据集的询问提示
    • 机器学习问题整理
    • 询问研究项目

用 Python 调用 GPT-3 API

GPT-3 是去年由 Open AI 推出的语言机器学习模型。它因其能够写作、写歌、写诗,甚至写代码而获得了广泛的媒体关注!该工具免费使用,只需要注册一个电子邮件即可。

GPT-3 是一种叫 transformer 的机器学习模型。具体来说,它就是 Generative Pre-training Transformer,因此叫做“GPT”。Transformer 架构使用自我注意和强化学习来模拟会话文本。通常,它一次处理一个单词,并使用前面的单词预测序列中的下一个单词。

GPT-3 具有广泛的应用场景,涵盖科学、艺术和技术等所有领域。它可以用来回答有关科学和数学的基本问题。甚至可以准确回答研究生级别的数学和科学概念相关的问题。更令人惊讶的是,我询问了一些与我的物理化学博士研究有关的问题,它能够提供较好的解释。不过,它也有其局限性。当我询问 GPT-3 有关物理化学中更新奇的研究方法时,它无法提供明确的答案。因此,在作为教育和研究的搜索引擎使用时,应该谨慎使用 GPT-3。GPT-3 没有事实核查功能。随着事实核查功能的提高,我可以想象 GPT-3 在研究生阶段甚至在研究领域将非常有用。

此外,除了我个人的经验外,我还看到了其他很多很酷的工具应用。例如,一个开发人员使用 GPT-3 来编排完成复杂任务的云服务。其他用户使用 GPT-3 生成了工作的 python 和 SQL 脚本,以及其他语言的程序。在艺术领域,用户请 GPT-3 写一篇比较现代和当代艺术的文章。GPT-3 的潜在应用几乎在任何领域都是丰富的。

GPT-3 在回答有准确内容的基本问题方面表现得很好。例如,它可以对光合作用做出相当不错的解释。它不能很好地回答关于光合作用的前沿研究问题,例如,它不能描述光合作用的机理和涉及的量子概念。它可以给出体面的回应,但不太可能提供大多数研究问题的技术细节。同样,GPT-3 可以编写一些简单的工作代码,但是随着任务的复杂度增加,生成的代码就越容易出错。它也不能生成政 治观点、伦理价值观、投资建议、准确的新闻报道等通常是由人类生成的内容。

尽管 GPT-3 有其局限性,但其广泛适用性令人印象深刻。我认为提出一些有趣的数据科学和机器学习提示,以看看它们是否可以补充数据科学工作流程的部分是有趣的。

首先,我们将根据一些简单的提示生成一些与数据科学有关的文本。一旦我们对该工具有了一些了解,就可以询问一些可以帮助解决数据科学任务的问题。有几个有趣的数据科学和机器学习问题,我们可以向 GPT-3 询问。例如,是否可以使用 GPT-3 源自公开可用的数据集?GPT-3 的训练数据有多少等。另一个有趣的应用是问题框架。 GPT-3 可以帮助用户构建良好的机器学习研究问题吗?虽然它难以给出具体的技术答案,但也许它可以很好地构建出未解决的研究问题。

另一个很酷的应用是使用 GPT-3 来决定用于特定应用程序的 ML 模型。这很好,因为对于在线文献丰富的经过验证的技术,它应该能够很好地帮助用户选择模型,并解释为什么选定的模型最适合。最后,我们可以尝试使用GPT-3 编写一些数据科学任务的 Python 代码。例如,我们将看看是否可以使用它来编写生成特定用例的合成数据的代码。

注意:GPT-3 API 的结果是不确定的。因此,您获得的结果可能与此处显示的输出略有不同。此外,由于 GPT-3 没有事实核查机制,建议您对计划用于工作,学校或个人项目的任何事实结果进行双重核查。

在这项工作中,我将在 Deepnote 中编写代码,它是一个协作数据科学笔记本,使得运行可再现实验非常简单。

安装 GPT-3

首先,让我们到 Deepnote 并创建一个新项目(如果您还没有账户,可以免费注册)。

创建一个名为“GPT3”的项目以及该项目中的一个名为“GPT3_ds”的 notebook。

接下来,我们在第一个单元中使用 pip 安装 OpenAI:

%pip install openai
%pip install catboost

将密钥保存在 openAI 对象的 api_key 属性:

import openai
openai.api_key = "your-key"

接下来就可以提问了,比如问“什么是 Pandas 库”,GP3 会给反馈:

completion = openai.Completion.create(engine="text-davinci-003", prompt="What is the pandas library?", max_tokens=1000)
print(completion.choices[0]['text'])
# output
Pandas is an open source software library written in Python for data manipulation and analysis. Pandas is widely used in data science, machine learning and many other fields. It provides high-level data structures and tools for handling and manipulating data, including data frames, series, plotting tools and more.

我们甚至可以询问更具体的问题,例如“Pandas 的一些常见用途是什么?”。它给出了合理的答案,列出了数据整理、数据可视化、数据聚合和时间序列分析:

completion = openai.Completion.create(engine="text-davinci-003", prompt="what are some common Pandas use cases?", max_tokens=240)
print(completion.choices[0]['text'])
# output
1. Data Cleaning and Transformation
2. Data Analysis and Exploration
3. Time Series Analysis
4. Data Visualization
5. Statistical Modeling
6. Predictive Modeling
7. Machine Learning
8. Web Scraping

询问“最常见的深度学习库是什么?”:

#what are the most common deep learning libraries?
completion = openai.Completion.create(engine="text-davinci-003", prompt="what are the most common deep learning libraries?", max_tokens=240)
print(completion.choices[0]['text'])
# output
. TensorFlow
2. PyTorch
3. Keras
4. Caffe
5. CNTK
6. MXNet
7. Theano
8. Deeplearning4j
9. Gensim
10. LUNA

甚至可以询问“什么是深度神经网络?”:

completion = openai.Completion.create(engine="text-davinci-003", prompt="What is a deep neural network?", max_tokens=1000)
print(completion.choices[0]['text'])
# output
A deep neural network (DNN) is a type of artificial neural network (ANN) with multiple layers of neurons between the input and output layers. DNNs are designed to learn complex non-linear relationships from data, and have been successfully applied in a wide range of areas such as image recognition, natural language processing, and financial forecasting.

使用 GPT-3 进行事实搜索应该谨慎进行,因为没有任何事实核查机制。在大多数情况下,如果您想获得关于数据科学和机器学习的众多在线博客和论坛中已知概念的表面理解,GPT-3 应该能够很好地工作。

特征工程

GPT-3 的另一个有趣的应用案例是用作指导数据科学工作的辅助工具。例如,GPT-3 能否给出一些改进模型性能的特征变换的想法?让我们询问 GPT-3:

completion = openai.Completion.create(engine="text-davinci-003", prompt="give some ideas on feature transformations that can improve model performance", max_tokens=1000)
print(completion.choices[0]['text'])
# output
1. Standardization/Normalization: A common feature transform used to ensure features are on the same scale, standardizing or normalizing variables can help limit the severity of outliers and improve the overall model performance.
2. Feature Binning: Binning is a process of transforming numerical variables into categorical ones. This can be useful when working with variables that have too many levels and can have a significant effect on the model performance.
3. Polynomial Expansion: When a nonlinear relationship is expected between features and the output variable, a polynomial expansion feature transformation can help improve model performance.
4. Feature Selection: Removing redundant or irrelevant features from the dataset can help improve the model performance as these features may lead to overfitting.
5. Ensemble: Combining different types of models (or different versions of the same model) can often improve performance due to their combined capabilities.

我们看到它给出了一些很好的特征变换建议以及每个变换的解释。

让我们看看是否可以更进一步。让它写一些 Python 代码:

completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that performs data standardization", max_tokens=1000)
print(completion.choices[0]['text'])
#output
# Import the necessary libraries
import numpy as np
# Define the data
data = np.array([[-3, 9, 0, 8],
                 [ 4, 6, 5, 12],
                 [20, 2, 3, 15]])
# Calculate mean and standard deviation
mean = np.mean(data, axis=0)
std = np.std(data, axis=0)
# Perform data standardization
standardized_data = (data - mean) / std
# Print the results
print(standardized_data)

复制并粘贴到一个新单元格中并运行它:

# Import the necessary libraries
import numpy as np
# Define the data
data = np.array([[-3, 9, 0, 8],
                 [ 4, 6, 5, 12],
                 [20, 2, 3, 15]])
# Calculate mean and standard deviation
mean = np.mean(data, axis=0)
std = np.std(data, axis=0)
# Perform data standardization
standardized_data = (data - mean) / std
# Print the results
print(standardized_data)
# output
[[-1.03881504  1.16247639 -1.29777137 -1.27872403]
 [-0.31164451  0.11624764  1.13554995  0.11624764]
 [ 1.35045955 -1.27872403  0.16222142  1.16247639]]

接下来,让我们对特征标准化变换做同样的操作:

completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that performs data normalization on fake data", max_tokens=1000)
print(completion.choices[0]['text'])
# output
# Normalizing data will rescale features in the range [0,1]
data = [3, 7, 10, 13] # Sample data
# Calculate the maximum and minimum of the data
max_data = max(data)
min_data = min(data)
# Normalize the data
normalized_data = [(x-min_data)/(max_data-min_data) for x in data]
# Print first value to check
print(normalized_data[0]) # Prints 0.2

执行返回的代码:

# Normalizing data will rescale features in the range [0,1]
data = [3, 7, 10, 13] # Sample data
# Calculate the maximum and minimum of the data
max_data = max(data)
min_data = min(data)
# Normalize the data
normalized_data = [(x-min_data)/(max_data-min_data) for x in data]
# Print first value to check
print(normalized_data)

模型选择

另一个酷的应用是模型选择。让我们看看 GPT-3 是否可以指导我们选择机器学习模型。询问“如何选择时间序列模型?”

completion = openai.Completion.create(engine="text-davinci-003", prompt="How do i select a time series model?", max_tokens=1000)
print(completion.choices[0]['text'])
# output
The selection of a time series model depends on the type of data that is being analyzed. If there are long-term trends or cycles in the data, then an autoregressive integrated moving average (ARIMA) model or a exponential smoothing (ETS) model may be the best option. If the data are seasonal or there are outliers present, then a Holt-Winters model may be a better choice. If the data do not contain any long-term trends or seasonality, a Box-Jenkins model may be suitable. Regardless of the model selected, it is important to consider the type of data that is being modeled when selecting a time series model.

答案是合理的,列出了平稳性、季节性、趋势以及模型性能评估的检查。让我们询问更具体的问题,例如“何时使用 ARIMA vs Prophet?”:

completion = openai.Completion.create(engine="text-davinci-003", prompt="When to use ARIMA vs FB prophet?", max_tokens=1000)
print(completion.choices[0]['text'])
# output
ARIMA and FB Prophet are both used for time series forecasting. ARIMA is a linear model and is better for predicting long-term trends with stationary data. FB Prophet is a non-linear model and is better for predicting short-term trends with non-stationary data. So, you would use ARIMA when you are mainly concerned with predicting long-term trends, and you would use FB Prophet when you are mainly concerned with predicting short-term trends.

生成合成数据

能用 GPT-3 生成合成数据吗?让我们看一看!我们将生成一个众所周知的数据:医院再入院和交易数据。

  • 医院再入院数据

询问 GPT-3:“编写 python 代码,生成合成医院再入院数据”。

completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that generates synthetic healthcare readmission data stored in a dataframe", max_tokens=1000)
print(completion.choices[0]['text'])
# output
import pandas as pd
import numpy as np
# Create Dataframe
df = pd.DataFrame(columns=['Patient_ID', 'Age', 'Admission_Type', 'Readmitted'])
# Generate Data
np.random.seed(0)
for i in range(10):
  admission_type = np.random.choice(['Urgent', 'Scheduled', 'Emergency'])
  patient_age = np.random.randint(18, 80)
  readmission = np.random.choice([0, 1])
  df.loc[i] = [i+1, patient_age, admission_type, readmission]
# Print Dataframe to Console
print(df)

执行此代码:

import pandas as pd
import numpy as np
# Create Dataframe
df = pd.DataFrame(columns=['Patient_ID', 'Age', 'Admission_Type', 'Readmitted'])
# Generate Data
np.random.seed(0)
for i in range(10):
  admission_type = np.random.choice(['Urgent', 'Scheduled', 'Emergency'])
  patient_age = np.random.randint(18, 80)
  readmission = np.random.choice([0, 1])
  df.loc[i] = [i+1, patient_age, admission_type, readmission]
# Print Dataframe to Console
df

输出结果:

让我们看看是否可以用这个合成数据构建一个分类模型,预测重新入院的人,并评估性能。

completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that generates synthetic healthcare readmission data stored in a dataframe. From this write code that builds a catboost model that predicts readmission outcomes. Also write code to calculate and print performance", max_tokens=3000)
print(completion.choices[0]['text'])
# output
 metrics
## Generate Synthetic Healthcare Readmission Data
import pandas as pd
import numpy as np
# set the seed for reproducibility
np.random.seed(1)
# create dataframe
df = pd.DataFrame(np.random.randint(0, 100, size=(100, 10)), columns=['age','gender','length_of_stay','diagnosis','NIV','laboratory','past_hospitalizations','medications','bmi','readmission'])
# add labels to data frame
df['age'] = np.random.randint(20, 80, size=(100))
df['gender'] = np.random.randint(1, 2, size=(100))
df['length_of_stay'] = np.random.randint(2, 14, size=(100))
df['diagnosis'] = np.random.randint(1, 5, size=(100))
df['NIV'] = np.random.randint(0, 2, size=(100))
df['laboratory'] = np.random.randint(1, 6, size=(100))
df['past_hospitalizations'] = np.random.randint(0, 10, size=(100))
df['medications'] = np.random.randint(1, 6, size=(100))
df['bmi'] = np.random.randint(18, 35, size=(100))
df['readmission'] = np.random.randint(0, 2, size=(100))
# print the dataframe
print(df)
## Build a CatBoost Model
from catboost import CatBoostClassifier
from sklearn.metrics import confusion_matrix
# separate X and y
X = df.iloc[:, 0:9]
y = df.iloc[:, 9]
# initialize catboost classifier
cat_clf = CatBoostClassifier(iterations=50,
                            learning_rate=0.3,
                            depth=8,
                            eval_metric='Accuracy',
                            random_seed=42)
# fit the model
cat_clf.fit(X, y)
# predict values
y_pred = cat_clf.predict(X)
# print confusion matrix
conf_mat = confusion_matrix(y, y_pred)
print(conf_mat)
## Calculate and Print Performance Metrics
from sklearn.metrics import accuracy_score, precision_score, recall_score
# calculate performance metrics
acc = accuracy_score(y, y_pred)
precision = precision_score(y, y_pred)
recall = recall_score(y, y_pred)
# print performance metrics
print("Accuracy: {}".format(acc))
print("Precision: {}".format(precision))
print("Recall: {}".format(recall))

复制上面的代码,并执行:

## Generate Synthetic Healthcare Readmission Data
import pandas as pd
import numpy as np
# set the seed for reproducibility
np.random.seed(1)
# create dataframe
df = pd.DataFrame(np.random.randint(0, 100, size=(100, 10)), columns=['age','gender','length_of_stay','diagnosis','NIV','laboratory','past_hospitalizations','medications','bmi','readmission'])
# add labels to data frame
df['age'] = np.random.randint(20, 80, size=(100))
df['gender'] = np.random.randint(1, 2, size=(100))
df['length_of_stay'] = np.random.randint(2, 14, size=(100))
df['diagnosis'] = np.random.randint(1, 5, size=(100))
df['NIV'] = np.random.randint(0, 2, size=(100))
df['laboratory'] = np.random.randint(1, 6, size=(100))
df['past_hospitalizations'] = np.random.randint(0, 10, size=(100))
df['medications'] = np.random.randint(1, 6, size=(100))
df['bmi'] = np.random.randint(18, 35, size=(100))
df['readmission'] = np.random.randint(0, 2, size=(100))
# print the dataframe
print(df)
## Build a CatBoost Model
from catboost import CatBoostClassifier
from sklearn.metrics import confusion_matrix
# separate X and y
X = df.iloc[:, 0:9]
y = df.iloc[:, 9]
# initialize catboost classifier
cat_clf = CatBoostClassifier(iterations=50,
                            learning_rate=0.3,
                            depth=8,
                            eval_metric='Accuracy',
                            random_seed=42)
# fit the model
cat_clf.fit(X, y)
# predict values
y_pred = cat_clf.predict(X)
# print confusion matrix
conf_mat = confusion_matrix(y, y_pred)
print(conf_mat)
## Calculate and Print Performance Metrics
from sklearn.metrics import accuracy_score, precision_score, recall_score
# calculate performance metrics
acc = accuracy_score(y, y_pred)
precision = precision_score(y, y_pred)
recall = recall_score(y, y_pred)
# print performance metrics
print("Accuracy: {}".format(acc))
print("Precision: {}".format(precision))
print("Recall: {}".format(recall))
# output
略
  • 交易数据

询问 GPT-3:“编写 Python 代码,生成交易数据”。

completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that generates synthetic transaction data stored in a dataframe", max_tokens=1000)
print(completion.choices[0]['text'])
# output
import pandas as pd
import numpy as np
#create randomly generated customer data
customer_id = np.arange(1,101)
customer_names = [f'John Doe {x}' for x in range(1,101)]
#create randomly generated transaction data
transaction_id = np.arange(1,101)
dates = [f'2020-07-{x}' for x in range(1,101)]
amounts = np.random.randint(low=1, high=1000, size=(100,))
#create dataframe with randomly generated data
transaction_data = pd.DataFrame({'Customer ID': customer_id,
                            'Customer Name': customer_names,
                            'Transaction ID': transaction_id,
                            'Date': dates,
                            'Amount': amounts})
print(transaction_data)

拷贝代码,并执行:

import pandas as pd
import numpy as np
#create randomly generated customer data
customer_id = np.arange(1,101)
customer_names = [f'John Doe {x}' for x in range(1,101)]
#create randomly generated transaction data
transaction_id = np.arange(1,101)
dates = [f'2020-07-{x}' for x in range(1,101)]
amounts = np.random.randint(low=1, high=1000, size=(100,))
#create dataframe with randomly generated data
transaction_data = pd.DataFrame({'Customer ID': customer_id,
                            'Customer Name': customer_names,
                            'Transaction ID': transaction_id,
                            'Date': dates,
                            'Amount': amounts})
transaction_data

(部分输出结果)

现在有物品 ID、客户和购买金额。让我们看看是否可以更具体一点。再增加年龄、性别和邮政编码。

completion = openai.Completion.create(engine="text-davinci-003", prompt="Write example python code that generates synthetic transaction data stored in a dataframe. Include customer ID, transaction amount, item ID, item name, age, gender, and zipcode", max_tokens=2000)
print(completion.choices[0]['text'])
# output
import pandas as pd
import numpy as np
rows = ['customer_ID', 'transaction_amnt', 'item_ID', 'item_name', 'age', 'gender', 'zipcode']
data = pd.DataFrame(columns=rows)
for i in range(1,100):
        customer_ID = int( np.random.uniform(100,600-100))
        transaction_amnt = np.random.uniform(1.25, 10.00)
        item_ID = int( np.random.uniform(1,35))
        item_name = np.random.choice(["phone", "tablet", "laptop", "smartwatch"])
        age = int( np.random.uniform(17,75))
        gender = np.random.choice(["male", "female"])
        zipcode = np.random.choice(["98101", "98200", "98469", "98801"])
        data.loc[i] = [customer_ID, transaction_amnt, item_ID, item_name, age, gender, zipcode]
print (data)

执行代码:

import pandas as pd
import numpy as np
rows = ['customer_ID', 'transaction_amnt', 'item_ID', 'item_name', 'age', 'gender', 'zipcode']
data = pd.DataFrame(columns=rows)
for i in range(1,100):
        customer_ID = int( np.random.uniform(100,600-100))
        transaction_amnt = np.random.uniform(1.25, 10.00)
        item_ID = int( np.random.uniform(1,35))
        item_name = np.random.choice(["phone", "tablet", "laptop", "smartwatch"])
        age = int( np.random.uniform(17,75))
        gender = np.random.choice(["male", "female"])
        zipcode = np.random.choice(["98101", "98200", "98469", "98801"])
        data.loc[i] = [customer_ID, transaction_amnt, item_ID, item_name, age, gender, zipcode]
data

(部分输出结果)

公共数据集的询问提示

另一种应用是询问 GPT-3 关于公共数据集。让我们询问 GPT-3 列出一些公共数据集:

completion = openai.Completion.create(engine="text-davinci-003", prompt=" list some good public datasets", max_tokens=1000)
print(completion.choices[0]['text'])
# output
1. US Census Data
2. Enron Email Dataset
3. Global Open Data Index
4. Air Quality Monitoring Data
5. New York City Taxi Trip Data
6. IMF Data
7. World Bank Open Data
8. Google Books Ngrams Dataset
9. Amazon Reviews Dataset
10. UCI Machine Learning Repository

让我们看看是否可以找到根据 Apache 2.0 许可的公共数据。还询问源链接:

completion = openai.Completion.create(engine="text-davinci-003", prompt=" list some good public datasets under apache 2.0 license. provide links to their source", max_tokens=1000, temperature=0)
print(completion.choices[0]['text'])
# output
1. OpenStreetMap: https://www.openstreetmap.org/
2. US Census Data: https://www.census.gov/data.html
3. Google Books Ngrams: https://aws.amazon.com/datasets/google-books-ngrams/
4. Wikipedia: https://dumps.wikimedia.org/enwiki/
5. US Government Spending Data: https://www.usaspending.gov/
6. World Bank Open Data: https://data.worldbank.org/
7. Common Crawl: http://commoncrawl.org/
8. Open Images: https://storage.googleapis.com/openimages/web/index.html
9. OpenFlights: https://openflights.org/data.html
10. GDELT: http://data.gdeltproject.org/

虽然并不是所有这些链接都是正确的,但它在寻找源链接方面做得相当不错。Google Ngrams、Common Crawl和 NASA 数据都相当出色。如果不提供数据的确切位置,在大多数情况下,它提供了一个可以找到数据的网页链接。

再请求对数据进行描述。请注意,虽然结果可能重叠,但它们在每次运行时略有不同。据我所知,结果并不总是可以相同的:

completion = openai.Completion.create(engine="text-davinci-003", prompt=" list some good public datasets under apache 2.0 license. provide links to their source and descriptions", max_tokens=1000, temperature=0)
print(completion.choices[0]['text'])
# output
1. OpenStreetMap: OpenStreetMap is a free, editable map of the world, created and maintained by volunteers and available for use under an open license. It contains millions of data points, including roads, buildings, and points of interest. Source: https://www.openstreetmap.org/
2. Google Books Ngrams: Google Books Ngrams is a dataset of over 5 million books from Google Books, spanning from 1500 to 2008. It contains word counts for each year, allowing researchers to track the usage of words over time. Source: https://aws.amazon.com/datasets/google-books-ngrams/
3. Wikipedia: Wikipedia is a free, open-source encyclopedia with millions of articles in hundreds of languages. It is available for use under the Creative Commons Attribution-ShareAlike license. Source: https://www.wikipedia.org/
4. Common Crawl: Common Crawl is a large-scale web crawl that collects data from over 5 billion webpages. It is available for use under the Apache 2.0 license. Source: https://commoncrawl.org/
5. Open Images Dataset: The Open Images Dataset is a collection of 9 million images annotated with labels spanning over 6000 categories. It is available for use under the Apache 2.0 license. Source: https://storage.googleapis.com/openimages/web/index.html

机器学习问题整理

最后一个示例,将看看 GPT-3 是否可以帮助我们整理机器学习问题。

  • 询问用例

虽然 GPT-3 中的数据仅截至2021年,但它仍然可以帮助我们构建与今天仍然相关的 ML 用例。让我们询问“社交媒体中有哪些新兴的机器学习用例?”:

completion = openai.Completion.create(engine="text-davinci-003", prompt="What are some emerging machine learning use-cases in social media?", max_tokens=1000, temperature=0)
print(completion.choices[0]['text'])
# output
1. Automated Content Curation: Automatically curating content from social media platforms to create personalized content feeds for users.
2. Sentiment Analysis: Analyzing user sentiment from social media posts to gain insights into customer opinions and preferences.
3. Social Media Monitoring: Using machine learning algorithms to monitor social media conversations and detect potential issues or trends.
4. Social Media Advertising: Leveraging machine learning to optimize social media advertising campaigns and target the right audience.
5. Social Media Recommendations: Using machine learning to recommend content to users based on their interests and preferences.

我们也可以看到在医疗领域的回复:

completion = openai.Completion.create(engine="text-davinci-003", prompt="What are some emerging machine learning use-cases in healthcare?", max_tokens=1000, temperature=0)
print(completion.choices[0]['text'])
# output
1. Automated Diagnosis: Machine learning algorithms can be used to analyze patient data and medical images to detect and diagnose diseases.
2. Personalized Medicine: Machine learning algorithms can be used to analyze patient data and medical images to create personalized treatment plans for each patient.
3. Drug Discovery: Machine learning algorithms can be used to analyze large datasets of chemical compounds to identify potential new drugs.
4. Clinical Decision Support: Machine learning algorithms can be used to analyze patient data and medical images to provide clinicians with real-time decision support.
5. Predictive Analytics: Machine learning algorithms can be used to analyze patient data and medical images to predict future health outcomes.

询问研究项目

现在让我们看看它是否可以提出一些研究问题。让我们询问:“使用深度学习进行图像检测有哪些好的研究项目?”

completion = openai.Completion.create(engine="text-davinci-003", prompt="What are some good research questions on using deep learning for image detection?", max_tokens=1000, temperature=0)
print(completion.choices[0]['text'])
# output
1. What are the most effective deep learning architectures for image detection?
2. How can deep learning be used to improve the accuracy of image detection?
3. What are the most effective methods for training deep learning models for image detection?
4. How can deep learning be used to detect objects in images with varying levels of complexity?
5. How can deep learning be used to detect objects in images with varying levels of illumination?
6. How can deep learning be used to detect objects in images with varying levels of noise?
7. How can deep learning be used to detect objects in images with varying levels of resolution?
8. How can deep learning be used to detect objects in images with varying levels of occlusion?
9. How can deep learning be used to detect objects in images with varying levels of background clutter?
10. How can deep learning be used to detect objects in images with varying levels of rotation?

再问一下 NLP 方向:

completion = openai.Completion.create(engine="text-davinci-003", prompt="What are some good research questions related to NLP transformer models?", max_tokens=1000, temperature=0)
print(completion.choices[0]['text'])
# output
1. How can transformer models be used to improve the accuracy of natural language processing tasks?
2. What are the most effective methods for training transformer models for natural language processing tasks?
3. How can transformer models be used to improve the efficiency of natural language processing tasks?
4. What are the most effective methods for optimizing transformer models for natural language processing tasks?
5. How can transformer models be used to improve the interpretability of natural language processing tasks?
6. What are the most effective methods for deploying transformer models for natural language processing tasks?
7. How can transformer models be used to improve the scalability of natural language processing tasks?
8. What are the most effective methods for combining transformer models with other natural language processing techniques?
9. How can transformer models be used to improve the robustness of natural language processing tasks?
10. What are the most effective methods for evaluating transformer models for natural language processing tasks?

本文所有代码都发布在 GitHub 上。

以上就是Python 调用GPT-3 API实现过程详解的详细内容,更多关于Python调用GPT-3 API的资料请关注我们其它相关文章!

(0)

相关推荐

  • LangChain简化ChatGPT工程复杂度使用详解

    目录 什么是LangChain? LangChain中的模块,每个模块如何使用? 具体代码 什么是LangChain? 使用ChatGPT大家可能都是知道prompt, (1)想像一下,如果我需要快速读一本书,想通过本书作为prompt,使用ChatGPT根据书本中来回答问题,我们需要怎么做? (2)假设你需要一个问答任务用到prompt A,摘要任务要使用到prompt B,那如何管理这些prompt呢?因此需要用LangChain来管理这些prompt. LangChain的出现,简化了我们

  • 使用 OpenAI API 和 Python 使用 GPT-3的操作方法

    目录 使用 OpenAI API 和相应的 Python SDK 试用 GPT-3 语言模型. 介绍 开始 使用接口 设置我们的环境 生成文本 结论 使用 OpenAI API 和相应的 Python SDK 试用 GPT-3 语言模型. 介绍 在本文中,我们将使用 GPT-3.我将向您展示如何访问它,并提供一些示例来说明您可以使用它做什么,以及您可以使用它构建什么样的应用程序! 开始 在使用 GPT-3 之前,您必须先使用 OpenAI 创建一个帐户.设置帐户后,为了访问 API,您需要添加计

  • 使用GPT-3训练垃圾短信分类器示例详解

    目录 引言 训练数据 注意事项 训练过程 开始训练 迭代训练 更多训练类型与商业应用 内容分类器 结构化信息提取 上下文会话 信息嵌入查询 引言 平时我们都会收到很多短信,由于微信等即时通讯工具的普及,短信已经成为了一个验证码接收器,但是偶尔也有不少垃圾短信,所以对短信进行分类和屏蔽是一个很简单又很重要的需求. 目前在AppStroe上有很多实现短信分类的App,比如<熊猫吃短信>,有需要可以自行下载体验一下.解决这样的一个简单的需求的App,就可以让App的开发者赚不少钱,我们可以学习一下这

  • 让chatGPT教你如何使用taro创建mbox

    目录 @tarojs/mobx如何使用useLocalstory创建实例 这样其他组件或页面能获取到数据变更吗? 那在函数式组件中如何使用inject @tarojs/mobx如何使用useLocalstory创建实例 @tarojs/mobx 是 Taro 框架的 MobX 实现,提供了 useLocalStore hook 用于在函数组件中创建 MobX store. 要使用 useLocalStore 创建实例,需要先定义一个 MobX store 类.例如,下面是一个简单的计数器示例:

  • 两天没解决的问题chatgpt用了5秒搞定隐藏bug

    目录 前言 隐藏的“间谍” code 验证第一位”间谍“ 借助GPT“侦探柯南” 找出"真凶" AI已来,未来已来 前言 一个说难不难,说简单竟看不出来是哪里问题的一个bug.是的 可能自己能力和经验尚浅无法识别,下面你们能否用火眼金睛一眼让bug原形毕露 (这个问题是忽然暴露出来的,无任何征兆,没人改动过,生产上运行了很长时间,故很奇怪,所以这个间谍看来很会隐藏) 隐藏的“间谍” 下面先来看代码(伪代码) code /** * 两个从数据库查询的耗时任务 * @param count

  • python 利用pyttsx3文字转语音过程详解

    这篇文章主要介绍了python 利用pyttsx3文字转语音过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 # -*- coding: utf-8 -*- import pyttsx3 engine = pyttsx3.init() with open("all.txt",'r',encoding='utf-8') as f: while 1: line = f.readline() print(line, end = '')

  • Python字节码与程序执行过程详解

    目录 问题: 1. 执行过程 2. 字节码 3. 源码编译 三种编译模式: 4. PyCodeObject 5. 反编译 6. pyc 问题: 我们每天都要编写一些Python程序,或者用来处理一些文本,或者是做一些系统管理工作.程序写好后,只需要敲下python命令,便可将程序启动起来并开始执行: $ python some-program.py 那么,一个文本形式的.py文件,是如何一步步转换为能够被CPU执行的机器指令的呢?此外,程序执行过程中可能会有.pyc文件生成,这些文件又有什么作用

  • Nest.js快速启动API项目过程详解

    目录 快速启动 使用nest自带的命令行工具 直接使用starter项目 用npm安装所需的包 创建controller 创建service 结构和命名 HTTP请求 处理Axios对象 配置 全局添加headers API文档 快速启动 最近上了一个新项目,这个客户管理一个庞大的任务和团队集群,而不同流程所适用的系统也不太一样,比如salesforce,hubspots之类的.这次的新项目需要在另外两个平台之间做一些事情.目前只需要先封装其中之一的API,因此我们选定使用NodeJS的框架Ne

  • python获取网络图片方法及整理过程详解

    这篇文章主要介绍了python获取网络图片方法及整理过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 方式1 使用urllib库 import urllib.request import os ,stat url = "https://cn.bing.com/th?id=OHR.Lidong2019_ZH-CN0761273672_1920x1080.jpg" try: urllib.request.urlretrieve(ur

  • Python调用百度AI实现人像分割详解

    目录 一.原始视频截图 二.提取人像 三.和背景图合并 四.合成视频 一.原始视频截图 import cv2 cap=cv2.VideoCapture(r"[小仙若]shake it !冬日也要活力满满! (P1. shake it).mp4") ret,frame=cap.read() i =0 timeF=3 j=0 num=0 while 1: i=i+1 if (i%timeF==0): j=j+1 cv2.imwrite("./pictures/"+str

  • 基于Python制作炸金花游戏的过程详解

    目录 前言 一.思路 二.解决方案 三.总结 前言 <诈金花>又叫三张牌,是在全国广泛流传的一种民间多人纸牌游戏.比如JJ比赛中的诈金花(赢三张),具有独特的比牌规则.游戏过程中需要考验玩家的胆略和智慧.--<百度百科> 前几天在交流群里边,有个叫[^-^]的粉丝分享了一道扑克牌诈金花的题目,要求用Python实现,题目如下: 自己写一个程序,实现发牌.比大小判断输赢. 游戏规则: 一付扑克牌,去掉大小王,每个玩家发3张牌,最后比大小,看谁赢. 有以下几种牌: 豹子:三张一样的牌,

  • Python破解excel进入密码的过程详解

    目录 一.excel进入密码 二.密码解除思路 三.python 1.conf.ini 2.crack.py 一.excel进入密码 加密算法cipher Algorithm=“AES” AES加密算法的详细介绍与实现 二.密码解除思路 通过排列组合的方式进行查找 注意:此方法比较考验对密码字典的选取,且耗费时间较长,仅供参考学习!! 文件夹如图所示: 将待破解的文件放到excel文件夹中. 三.python 1.conf.ini 将准备好的密码字典添加到conf.ini中password后面,

  • Python调用C/C++动态链接库的方法详解

    本文以实例讲解了Python调用C/C++ DLL动态链接库的方法,具体示例如下: 示例一: 首先,在创建一个DLL工程(本例创建环境为VS 2005),头文件: //hello.h #ifdef EXPORT_HELLO_DLL #define HELLO_API __declspec(dllexport) #else #define HELLO_API __declspec(dllimport) #endif extern "C" { HELLO_API int IntAdd(in

  • ubuntu中python调用C/C++方法之动态链接库详解

    安装boost python调用C/C++的方法有很多,本文使用boost.python.考虑到后期有好多在boost上的开发工作,所以boost一并安装了,Boost库分为两个部分来使用,一是直接使用对应的头文件,二是需要编译安装相应的库才可以使用. 具体安装方法可以参考:https://www.jb51.net/article/150380.htm 这里使用: sudo apt-get install libboost-all-dev 服务端 序列化后发送 main.cpp: #includ

  • 基于Python生成个性二维码过程详解

    一.问题描述 通过调用MyQR模块来实现生成个人所需二维码. 安装: pip install myqr 二.代码实现 1.普通二维码 from MyQR import myqr # 普通二维码 myqr.run( words='http://www.cnblogs.com/mayi0312', save_name='qrcode.png' ) 效果图: 2.带图片的艺术二维码 光是二维码,太单调了点.我们可以加上我们想要的图片,使二维码更具辨识度! 准备的Logo图片: 当然,也可以选择其他个人

随机推荐