Redis BloomFilter布隆过滤器原理与实现

目录
  • Bloom Filter 概念
  • Bloom Filter 原理
    • 缓存穿透
  • Bloom Filter的缺点
  • 常见问题
  • go语言实现

Bloom Filter 概念

布隆过滤器(英语:Bloom Filter)是1970年由一个叫布隆的小伙子提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

Bloom Filter 原理

布隆过滤器的原理是,当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。

Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率

缓存穿透

每次查询都会直接打到DB

简而言之,言而简之就是我们先把我们数据库的数据都加载到我们的过滤器中,比如数据库的id现在有:1、2、3

那就用id:1 为例子他在上图中经过三次hash之后,把三次原本值0的地方改为1

下次数据进来查询的时候如果id的值是1,那么我就把1拿去三次hash 发现三次hash的值,跟上面的三个位置完全一样,那就能证明过滤器中有1的

反之如果不一样就说明不存在了

那应用的场景在哪里呢?一般我们都会用来防止缓存击穿

简单来说就是你数据库的id都是1开始然后自增的,那我知道你接口是通过id查询的,我就拿负数去查询,这个时候,会发现缓存里面没这个数据,我又去数据库查也没有,一个请求这样,100个,1000个,10000个呢?你的DB基本上就扛不住了,如果在缓存里面加上这个,是不是就不存在了,你判断没这个数据就不去查了,直接return一个数据为空不就好了嘛。

这玩意这么好使那有啥缺点么?有的,我们接着往下看

Bloom Filter的缺点

bloom filter之所以能做到在时间和空间上的效率比较高,是因为牺牲了判断的准确率、删除的便利性

存在误判,可能要查到的元素并没有在容器中,但是hash之后得到的k个位置上值都是1。如果bloom filter中存储的是黑名单,那么可以通过建立一个白名单来存储可能会误判的元素。

删除困难。一个放入容器的元素映射到bit数组的k个位置上是1,删除的时候不能简单的直接置为0,可能会影响其他元素的判断。可以采用Counting Bloom Filter

常见问题

1、为何要使用多个哈希函数?

Hash本身就会面临冲突,如果只使用一个哈希函数,那么冲突的概率会比较高。例如长度100的数组,如果只使用一个哈希函数,添加一个元素后,添加第二个元素时冲突的概率为1%,添加第三个元素时冲突的概率为2%…但如果使用两个哈希函数,添加一个元素后,添加第二个元素时冲突的概率降为万分之4(四种可能的冲突情况,情况总数100x100)

go语言实现

package main
import (
	"fmt"
	"github.com/bits-and-blooms/bitset"
)
//设置哈希数组默认大小为16
const DefaultSize = 16
//设置种子,保证不同哈希函数有不同的计算方式
var seeds = []uint{7, 11, 13, 31, 37, 61}
//布隆过滤器结构,包括二进制数组和多个哈希函数
type BloomFilter struct {
	//使用第三方库
	set *bitset.BitSet
	//指定长度为6
	hashFuncs [6]func(seed uint, value string) uint
}
//构造一个布隆过滤器,包括数组和哈希函数的初始化
func NewBloomFilter() *BloomFilter {
	bf := new(BloomFilter)
	bf.set = bitset.New(DefaultSize)

	for i := 0; i < len(bf.hashFuncs); i++ {
		bf.hashFuncs[i] = createHash()
	}
	return bf
}
//构造6个哈希函数,每个哈希函数有参数seed保证计算方式的不同
func createHash() func(seed uint, value string) uint {
	return func(seed uint, value string) uint {
		var result uint = 0
		for i := 0; i < len(value); i++ {
			result = result*seed + uint(value[i])
		}
		//length = 2^n 时,X % length = X & (length - 1)
		return result & (DefaultSize - 1)
	}
}
//添加元素
func (b *BloomFilter) add(value string) {
	for i, f := range b.hashFuncs {
		//将哈希函数计算结果对应的数组位置1
		b.set.Set(f(seeds[i], value))
	}
}
//判断元素是否存在
func (b *BloomFilter) contains(value string) bool {
	//调用每个哈希函数,并且判断数组对应位是否为1
	//如果不为1,直接返回false,表明一定不存在
	for i, f := range b.hashFuncs {
		//result = result && b.set.Test(f(seeds[i], value))
		if !b.set.Test(f(seeds[i], value)) {
			return false
		}
	}
	return true
}
func main() {
	filter := NewBloomFilter()
	filter.add("asd")
	fmt.Println(filter.contains("asd"))
	fmt.Println(filter.contains("2222"))
	fmt.Println(filter.contains("155343"))
}

输出结果如下:

true
false
false

到此这篇关于Redis BloomFilter布隆过滤器原理与实现的文章就介绍到这了,更多相关Redis BloomFilter内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Redis 中的布隆过滤器的实现

    什么是『布隆过滤器』 布隆过滤器是一个神奇的数据结构,可以用来判断一个元素是否在一个集合中.很常用的一个功能是用来去重.在爬虫中常见的一个需求:目标网站 URL 千千万,怎么判断某个 URL 爬虫是否宠幸过?简单点可以爬虫每采集过一个 URL,就把这个 URL 存入数据库中,每次一个新的 URL 过来就到数据库查询下是否访问过. select id from table where url = 'https://jaychen.cc' 但是随着爬虫爬过的 URL 越来越多,每次请求前都要访问数据

  • Python+Redis实现布隆过滤器

    布隆过滤器是什么 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难. 布隆过滤器的基本思想 通过一种叫作散列表(又叫哈希表,Hash table)的数据结构.它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit array)中的一个点.这样一来,我们只要看看这个点是不是1就可以知道集合中有没

  • 浅析python实现布隆过滤器及Redis中的缓存穿透原理

    目录 布隆过滤器的原理 在 Python 中使用布隆过滤器 1.标准布隆过滤器. 2.计数布隆过滤器. 3.标准扩容布隆过滤器. 4.计数扩容布隆过滤器. Redis 中使用布隆过滤器 最后的话 在开发软件时,我们经常需要判断一个元素是否在一个集合中,比如,如何判断单词的拼写是否错误(判断单词是否在已知的字典中):在网络爬虫里,如何确认一个网址是否已经爬取过:反垃圾邮件系统中,如何判断一个邮件地址是否为垃圾邮件地址等等. 如果这些作为面试题那就很有区分度了,初级工程师就会说,把全部的元素都存在

  • SpringBoot+Redis布隆过滤器防恶意流量击穿缓存

    目录 什么是恶意流量穿透 怎么防 布隆过滤器的另一个用武场景 给Redis安装BloomFilter 在Redis里使用BloomFilter 结合SpringBoot使用 搭建springboot工程 使用压测工具喂120万条数据进入RedisBloomfilter看实际效果 本文主要介绍了SpringBoot+Redis布隆过滤器防恶意流量击穿缓存,具体如下: 什么是恶意流量穿透 假设我们的Redis里存有一组用户的注册email,以email作为Key存在,同时它对应着DB里的User表的

  • Redis实现布隆过滤器的方法及原理

    布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难. 本文将介绍布隆过滤器的原理以及Redis如何实现布隆过滤器. 应用场景 1.50亿个电话号码,现有10万个电话号码,如何判断这10万个是否已经存在在50亿个之中?(可能方案:数据库,set, hyperloglog) 2.新闻客户端看新闻时,它会不

  • SpringBoot+Redis实现布隆过滤器的示例代码

    目录 简述 Redis安装BloomFilter 基本指令 结合SpingBoot 方式一 方式二 简述 关于布隆过滤器的详细介绍,我在这里就不再赘述一遍了 我们首先知道:BloomFilter使用长度为m bit的字节数组,使用k个hash函数,增加一个元素: 通过k次hash将元素映射到字节数组中k个位置中,并设置对应位置的字节为1.查询元素是否存在: 将元素k次hash得到k个位置,如果对应k个位置的bit是1则认为存在,反之则认为不存在. Guava 中已经有具体的实现,而在我们实际生产

  • Redis使用元素删除的布隆过滤器来解决缓存穿透问题

    目录 前言 缓存雪崩 解决方案 缓存击穿 解决方案 缓存穿透 解决方案 布隆过滤器(Bloom Filter) 什么是布隆过滤器 位图(Bitmap) 哈希碰撞 布隆过滤器的2大特点 fpp 布隆过滤器的实现(Guava) 布隆过滤器的如何删除 带有计数器的布隆过滤器 总结 前言 在我们日常开发中,Redis使用场景最多的就是作为缓存和分布式锁等功能来使用,而其用作缓存最大的目的就是为了降低数据库访问.但是假如我们某些数据并不存在于Redis当中,那么请求还是会直接到达数据库,而一旦在同一时间大

  • Redis BloomFilter实例讲解

    目录 1. 简介 2. guava 实现 2.1 导入依赖 2.2 BloomFilterTest 2.3 启动测试 2.4 小节 3. redisson 实现 3.1 导入依赖 3.2 BloomFilterWithRedisson 3.3 启动测试 1. 简介 布隆过滤器是防止缓存穿透的方案之一.布隆过滤器主要是解决大规模数据下不需要精确过滤的业务场景,如检查垃圾邮件地址,爬虫URL地址去重, 解决缓存穿透问题等. 布隆过滤器:在一个存在一定数量的集合中过滤一个对应的元素,判断该元素是否一定

  • Redis中Redisson布隆过滤器的学习

    目录 简介 使用 Demo 依赖 测试代码 简析 初始化 添加元素 检索元素 简介 本文基于Spring Boot 2.6.6.redisson 3.16.0简单分析Redisson布隆过滤器的使用. 布隆过滤器是一个非常长的二进制向量和一系列随机哈希函数的组合,可用于检索一个元素是否存在: 使用场景如下: 解决Redis缓存穿透问题: 邮件过滤: 使用 建立一个二进制向量,所有位设置0: 选择K个散列函数,用于对元素进行K次散列,计算向量的位下标: 添加元素:将K个散列函数作用于该元素,生成K

  • Redis BloomFilter布隆过滤器原理与实现

    目录 Bloom Filter 概念 Bloom Filter 原理 缓存穿透 Bloom Filter的缺点 常见问题 go语言实现 Bloom Filter 概念 布隆过滤器(英语:Bloom Filter)是1970年由一个叫布隆的小伙子提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难. Bloom Filter 原理 布隆过滤器的原理是,当一个元素

  • 布隆过滤器(bloom filter)及php和redis实现布隆过滤器的方法

    引言 在介绍布隆过滤器之前我们首先引入几个场景. 场景一 在一个高并发的计数系统中,如果一个key没有计数,此时我们应该返回0,但是访问的key不存在,相当于每次访问缓存都不起作用了.那么如何避免频繁访问数量为0的key而导致的缓存被击穿? 有人说, 将这个key的值置为0存入缓存不就行了吗?确实,这是一个好的方案.大部分情况我们都是这样做的,当访问一个不存在的key的时候,设置一个带有过期时间的标志,然后放入缓存.不过这样做的缺点也很明显,浪费内存和无法抵御随机key攻击. 场景二 在一个黑名

  • C++ BloomFilter布隆过滤器应用及概念详解

    目录 一.布隆过滤器概念 二.布隆过滤器应用 三.布隆过滤器实现 1.插入 2.查找 3.删除 四.布隆过滤器优缺 五.结语 一.布隆过滤器概念 布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的.比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中.此种方式不仅可以提升查询效率,也可以节省大量的内存空间 . 位图的优点是节省空间,快,缺点是要求范围相对集中,

  • python实现布隆过滤器及原理解析

    在学习redis过程中提到一个缓存击穿的问题, 书中参考的解决方案之一是使用布隆过滤器, 那么就有必要来了解一下什么是布隆过滤器.在参考了许多博客之后, 写个总结记录一下. 一.布隆过滤器简介 什么是布隆过滤器? 本质上布隆过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 "某样东西一定不存在或者可能存在". 相比于传统的 Set.Map 等数据结构,它更高效

  • Redis 布隆过滤器命令的使用详解

    目录 一.Docker 安装 Redis 布隆过滤器 学习历史重要原因之一,就是要学会感恩,因为我们都是站在巨人的肩膀上. 1.1.安装 注意: 1.2.测试 二.RedisBloom 命令讲解 2.1.命令大纲 2.2.BF.ADD 和 BF.MADD 2.3.BF.EXISTS 和 BF.MEXISTS 2.4.BF.INFO 2.5.BF.RESERVE 2.6.BF.INSERT 因为平常使用 Docker 比较多,所以照常还是使用Docker来准备环境啦. 一.Docker 安装 Re

  • 布隆过滤器(Bloom Filter)的Java实现方法

    布隆过滤器原理很简单:就是把一个字符串哈希成一个整数key,然后选取一个很长的比特序列,开始都是0,在key把此位置的0变为1:下次进来一个字符串,哈希之后的值key,如果在此比特位上的值也是1,那么就说明这个字符串存在了. 如果按照上面的做法,那就和哈希算法没有什么区别了,哈希算法还有重复的呢. 布隆过滤器是将一个字符串哈希成多个key,我还是按照书上的说吧. 先建立一个16亿二进制常量,然后将这16亿个二进制位全部置0.对于每个字符串,用8个不同的随机产生器(F1,F2,.....,F8)产

随机推荐