C#实现获取系统目录并以Tree树叉显示的方法

本文讲述C#获取Windows系统目录,如何目录遍历以及将信息捆绑在TreeView中显示出来的实现方法,具体实现代码如下:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.IO;
namespace 获取系统目录
{
 public class Form1 : System.Windows.Forms.Form
 {
 private System.Windows.Forms.TreeView treeView1;
 private System.ComponentModel.IContainer components;
 private System.Windows.Forms.Button button2;
 private System.Windows.Forms.Label label2;
 private System.Windows.Forms.Button button1;
 private System.Windows.Forms.TextBox textBox1;
 private System.Windows.Forms.Label label1;
 public Form1()
 {
  InitializeComponent();
  FillTree(treeView1, true); // 显示所有文件夹以及文件
 }
 protected override void Dispose( bool disposing )
 {
  if( disposing )
  {
  if (components != null)
  {
   components.Dispose();
  }
  }
  base.Dispose( disposing );
 }
 #region Windows 窗体设计器生成的代码
 private void InitializeComponent()
 {
  this.textBox1 = new System.Windows.Forms.TextBox();
  this.label2 = new System.Windows.Forms.Label();
  this.label1 = new System.Windows.Forms.Label();
  this.treeView1 = new System.Windows.Forms.TreeView();
  this.button1 = new System.Windows.Forms.Button();
  this.button2 = new System.Windows.Forms.Button();
  this.SuspendLayout();
  this.textBox1.Location = new System.Drawing.Point(280, 56);
  this.textBox1.Multiline = true;
  this.textBox1.Name = "textBox1";
  this.textBox1.Size = new System.Drawing.Size(208, 192);
  this.textBox1.TabIndex = 3;
  this.textBox1.Text = "";
  this.label2.AutoSize = true;
  this.label2.Location = new System.Drawing.Point(280, 24);
  this.label2.Name = "label2";
  this.label2.Size = new System.Drawing.Size(116, 17);
  this.label2.TabIndex = 4;
  this.label2.Text = "文件夹或文件信息:";
  this.label1.AutoSize = true;
  this.label1.Location = new System.Drawing.Point(16, 24);
  this.label1.Name = "label1";
  this.label1.Size = new System.Drawing.Size(153, 17);
  this.label1.TabIndex = 5;
  this.label1.Text = "请选择一个文件夹或文件:";
  this.treeView1.ImageIndex = -1;
  this.treeView1.Location = new System.Drawing.Point(16, 56);
  this.treeView1.Name = "treeView1";
  this.treeView1.SelectedImageIndex = -1;
  this.treeView1.Size = new System.Drawing.Size(184, 192);
  this.treeView1.TabIndex = 6;
  this.button1.Location = new System.Drawing.Point(216, 104);
  this.button1.Name = "button1";
  this.button1.Size = new System.Drawing.Size(48, 32);
  this.button1.TabIndex = 7;
  this.button1.Text = "显示";
  this.button1.Click += new System.EventHandler(this.button1_Click);
  this.button2.Location = new System.Drawing.Point(216, 168);
  this.button2.Name = "button2";
  this.button2.Size = new System.Drawing.Size(48, 32);
  this.button2.TabIndex = 8;
  this.button2.Text = "清空";
  this.button2.Click += new System.EventHandler(this.button2_Click);
  this.AutoScaleBaseSize = new System.Drawing.Size(6, 14);
  this.ClientSize = new System.Drawing.Size(504, 277);
  this.Controls.Add(this.button2);
  this.Controls.Add(this.button1);
  this.Controls.Add(this.treeView1);
  this.Controls.Add(this.label1);
  this.Controls.Add(this.label2);
  this.Controls.Add(this.textBox1);
  this.Name = "Form1";
  this.Text = "Form1";
  this.ResumeLayout(false);
 }
 #endregion
 [STAThread]
 static void Main()
 {
  Application.Run(new Form1());
 }
 // 填充目录和文件到 TreeView 控件中
 // isSource 表示是否显示文件
 private void FillTree(TreeView treeView,bool isSource)
 {
  treeView.Nodes.Clear(); // 清空
  // 获取系统上的所有逻辑驱动器
  string[] strDrives = Environment.GetLogicalDrives();
  foreach(string rootDirectoryName in strDrives)
  {
  try
  {
   // 获取驱动器顶级目录列表
   DirectoryInfo dir = new DirectoryInfo(rootDirectoryName);

   // 如果获得的目录信息正确,则将它添加到 TreeView 控件中
   if (dir.Exists == true)
   {
   TreeNode newNode = new TreeNode(rootDirectoryName);
   treeView.Nodes.Add(newNode);
   if (isSource)
   {
    GetSubDirectoryNodes(newNode, newNode.Text, true);
   }
   else
   {
    GetSubDirectoryNodes(newNode, newNode.Text, false);
   }
   }
  }
  catch(Exception e)
  {
   MessageBox.Show(e.Message);
  }
  }
 }
 // 遍历子目录
 private void GetSubDirectoryNodes(TreeNode parentNode, string fullName, bool getFileNames)
 {
  DirectoryInfo dir = new DirectoryInfo(fullName);
  DirectoryInfo[] subDirs = dir.GetDirectories();
  // 为每一个子目录添加一个子节点
  foreach(DirectoryInfo subDir in subDirs)
  {
  // 不显示隐藏文件夹
  if((subDir.Attributes & FileAttributes.Hidden) != 0)
  {
   continue;
  }
  TreeNode subNode = new TreeNode(subDir.Name);
  parentNode.Nodes.Add(subNode);
  // 递归调用GetSubDirectoryNodes
  GetSubDirectoryNodes(subNode, subDir.FullName, getFileNames);
  }
  // 获取目录中的文件
  if(getFileNames)
  {
  FileInfo[] files = dir.GetFiles();
  foreach(FileInfo file in files)
  {
   TreeNode fileNode = new TreeNode(file.Name);
   parentNode.Nodes.Add(fileNode);
  }
  }
 }
 private void button1_Click(object sender, System.EventArgs e)
 {
  try
  {
  TreeNode selectedNode = treeView1.SelectedNode;
  DirectoryInfo info = new DirectoryInfo(selectedNode.FullPath);
  string [] strArray = new string[4];
  strArray[0] = "完整路径名 : "+ info.FullName;
  strArray[1] = "创建时间 : "+ info.CreationTime.ToString();
  strArray[2] = "上次访问时间 : "+ info.LastAccessTime.ToString();
  strArray[3] = "上次写入时间 : "+ info.LastWriteTime.ToString();
  textBox1.Lines = strArray;
  }
  catch(Exception exc)
  {
  MessageBox.Show(exc.Message);
  }
 }
 private void button2_Click(object sender, System.EventArgs e)
 {
  textBox1.Text = "";
 }
 }
}
(0)

相关推荐

  • 关于c#二叉树的实现

    本篇纯属娱乐,源于整理代码,发现还曾实现过遍历二叉树. 虽然.NET/C#中的各种集合类已经实现了最优的排序设计,但了解基本的算法实现有助于软件开发中的各种权衡和选择.比如,如果你实现过B+树排序和查找,并将树节点序列化至二进制文件块,则你应该已经了解了各种数据库索引的基本设计. 什么是二叉树?http://en.wikipedia.org/wiki/Binary_tree 二叉树节点类定义 复制代码 代码如下: View Code    /// <summary>   /// 二叉树节点  

  • 一个很简单的jquery+xml+ajax的无刷新树结构(无css,后台是c#)

    复制代码 代码如下: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls; using System.Data.Linq; using System.Xml; using System.Xml.Linq; namespace WebApplication3 { public

  • C#求解哈夫曼树,实例代码

    复制代码 代码如下: class HuffmanTree    {        private Node[] data;        public int LeafNum { get; set; }        public Node this[int index]        {            get { return data[index]; }            set { data[index] = value; }        }        public Hu

  • C# TreeView无限目录树实现方法

    本文实例讲述了C# TreeView无限目录树实现方法.分享给大家供大家参考,具体如下: #region 绑定客户树 protected void bindTreeView() { TreeView1.Nodes.Clear(); string userid = Session["UserID"].ToString(); string sqlwr = new SY_ADMINUSER().GetUserIDListByLoginUser(userid, "CUSTOMERSE

  • ASP.NET C#生成下拉列表树实现代码

    效果图: 代码: 复制代码 代码如下: using System.Data; using System.Web.UI.WebControls; /// <summary> /// 根据DataTable生成下拉列表树 /// </summary> public class DropDownListHelp { private string gridline; private DataTable dt; public DropDownListHelp() { // //TODO: 在

  • c#反射表达式树模糊搜索示例

    复制代码 代码如下: public static Expression<Func<T, bool>> GetSearchExpression<T>(string SearchString)        {            Expression<Func<T, bool>> filter = null; if (string.IsNullOrEmpty(SearchString)) return null;            var l

  • C#之Expression表达式树实例

    本文实例讲述了C#之Expression表达式树,分享给大家供大家参考.具体实现方法如下: 表达式树表示树状数据结构的代码,树状结构中的每个节点都是一个表达式,例如一个方法调用或类似 x < y 的二元运算 1.利用 Lambda 表达式创建表达式树 复制代码 代码如下: Expression<Func<int, int, int, int>> expr = (x, y, z) => (x + y) / z; 2.编译表达式树,该方法将表达式树表示的代码编译成一个可执行

  • C#使用前序遍历、中序遍历和后序遍历打印二叉树的方法

    本文实例讲述了C#使用前序遍历.中序遍历和后序遍历打印二叉树的方法.分享给大家供大家参考.具体实现方法如下: public class BinaryTreeNode { public BinaryTreeNode Left { get; set; } public BinaryTreeNode Right { get; set; } public int Data { get; set; } public BinaryTreeNode(int data) { this.Data = data;

  • C# 递归查找树状目录实现方法

    1.递归查找树状目录 复制代码 代码如下: public partial class Form1 : Form    {        string path = @"F:\学习文件";//递归查找树状目录        public Form1()        {递归查找树状目录            InitializeComponent();        }        private void Form1_Load(object sender, EventArgs e) 

  • C#通过KD树进行距离最近点的查找

    本文首先介绍Kd-Tree的构造方法,然后介绍Kd-Tree的搜索流程及代码实现,最后给出本人利用C#语言实现的二维KD树代码.这也是我自己动手实现的第一个树形的数据结构.理解上难免会有偏差,敬请各位多多斧正. 1. KD树介绍 Kd-Tree(KD树),即K-dimensional tree,是一种高维索引树形数据结构,常用于在大规模的高维数据空间进行最邻近查找和近似最邻近查找.我实现的KD树是二维的Kd - tree.目的是在点集中寻找最近点.参考资料是Kd-Tree的百度百科.并且根据百度

随机推荐